2014, № 5

КРАТКИЕ СООБЩЕНИЯ

УДК 551.72+552.311 (470.324)

К.А. САВКО, Р.А. ТЕРЕНТЬЕВ, А.Н. ЛАРИОНОВ

ВЕЩЕСТВЕННЫЙ СОСТАВ И ВОЗРАСТ МЕЗОКРАТОВЫХ ПОРОД ОЛЬХОВСКОГО ИНТРУЗИВА ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА

Дана характеристика вещественного состава и U-Pb возраста мезократовых пород Ольховского интрузива, расположенного в полосе сочленения Сарматского и Волго-Уральского сегментов Восточно-Европейского кратона среди палеопротерозойских метатерригенных пород воронежской свиты. Выявлено, что породы внешнего магматическою кольца Ольховского массива относятся к известково-щелочной кварцдиорит—кварцмонцодиорит—гранодиоритовой серии. На основании изотопно-геохимических исследований по цирконам оценено время кристаллизации — 2065±9,9 млн. лет кварцевых диоритов внешнего магматического кольца, согласующиеся с временем кульминации гранитоидного магматизма в Воронцовском террейне Воронежского кристаллического массива.

Ключевые слова: Воронежский кристаллический массив; палеопротерозой; позднеорогенные диориты; изотопный возраст.

Ольховский интрузив расположен в Центрально-Европейской части России на площади Воронежского кристаллического массива. Считается, что он прорывает терригенные отложения воронежской свиты [2], которая со стратиграфическим несогласием залегает на палеопротерозойских образованиях Лосевского и Воронцовского террейнов Восточно-Сарматского орогена [6] в полосе сочленения Сарматского и Волго-Уральского сегментов Восточно-Европейского кратона [9]. Воронежская свита состоит из сланцев, метаалевролитов, метапсаммитов, базальных и внутриформационных метаконгломератов, заполняющих так называемую Ольховско-Шукавскую грабенсинклиналь.

Ольховский массив имеет овальную форму диаметром около 20 км по длинной оси (рис. 1). Мезократовые породы внешней части интрузива, отнесённые к габбронорит-кварцмонцонитовой серии ранней фазы внедрения [2, 3], слагают прерывистое кольцо, в центре которого расположено тело лейкогранодиоритов. На основании изотопных соотношений ⁸⁷Sr/⁸⁶Sr = 0,71676±7 предположено коровое происхождение лейкогранодиоритов [8].

Ранее вещественный состав и геохронология комплекса исследовались в связи с возможной никеленосностью [2, 3, 7, 8]. Его геохронологическая характеристика важна для расшифровки эволюции магматизма на восточной части Воронежского кристаллического массива, а также для определения верхней возрастной границы накопления терригенной части воронежской свиты. Ретроспективные U-Pb изотопные определения возраста пород Ольховского массива осуществлены методом TIMS (Thermal Ionisation Mass Spectrometry). Оценки изотопного возраста составили 2050±23 [7] и 2041±49 [8] млн. лет для кварцевых монцогабброноритов (сохранена авторская номеклатура породы) внешнего кольца и лейкогранодиоритов внутреннего тела соотвественно. Большие погрешности верхних пересечений дискордии с конкордией не позволяют однозначно определить временной интервал магматической активности, соотвествующий внедрению пород ольховского комплекса. В связи с неопределенностью ретроспективных изотопных дат, для решения вопроса о возрасте и уточненения вещественного состава Ольховского массива была проведена ревизия опубликованных ранее минералого-петрографических и петрохимических данных, а также изотопно-геохронологическое исследование пород внешнего магматического кольца.

Вмещающие породы. Контактовая зона Ольховского массива установлена в верхней части скважины 8846. Здесь наблюдаются амфибол-биотитовые тонкозернистые роговики массивной текстуры, образованные по полевошпат-кварцевым метапесчаникам с известковистым цементом. Видимая мощность контактового ореола (от интрузивных пород до пород коры выветривания) около 20 м. Минеральный состав роговиков и реликты метапсаммитов свидетельствуют, что контактовому метаморфизму подвергались известково-силикатные метаосадочные породы.

Вещественный состав плутонических пород. Плутонические образования внешнего кольца рассматриваемого интрузива представляют собой светло-серые, серые до розовато-серых массивные мелкосреднезернистые породы. Содержания главных породообразующих минералов широко варьируют, по [2], и нашим данным (об., %): плагиоклаз 36,6–73,0, ортоклаз 0,8–22,9, кварц 4,5–23,3, клинопироксен 1,1–26,1, ортопироксен 0–23,9, амфибол 0–19,0, биотит 0,2–11,0. Низкие значения цветного индекса (М), как правило, не превышающие 40 %, позволяют применять диаграмму QAP для классифика-

Рис. 1. Схематическая карта Ольховского массива [8]: *I* – лейкогранодиориты центрального тела, *2* – породы внешнего магматического кольца, *3* – вмещающие породы, предположительно терригенные отложения воронежской свиты, *4* – разрывные нарушения, *5* – скважины

ции мезократовых пород (рис. 2). Так как содержание An в плагиоклазе меньше 50, что подтверждено данными предшественников [2], то корневым названием в нашем случае следует считать диорит, а породы внешнего кольца Ольховского масси-

Рис. 2. Модальный минеральный состав пород Ольховского массива на фрагменте диаграммы QAP [13]. Q – кварц, A – щелочные полевые шпаты, P – плагиоклаз. Мелкие значки – количественно-минеральный состав пород заимствованый из работы [2], крупные значки – авторские данные. Цифра внутри значка соответствует порядковому номеру в таблице 1

Рис. 3. Положение химических составов пород Ольховского массива на диаграммах Na₂O+K₂O-SiO₂ (*a*) и AFM (*б*). Границы петрохимических серий даны, по [10]. Границы семейств пород на рис 3а даны, по [12]. В качестве исходных данных использованы фондовые химические анализы предприятия «Воронежгеология»

ва относить к кварцдиорит-кварцмонцодиорит-гранодиоритовой серии (рис. 2).

По петрохимическому составу (рис. 3) рассматриваемые породы являются средними и кислыми (SiO₂ 52,25—65,0 мас. %) и относятся к семействам известково-щелочных, от умеренно- до высокоглиноземистых $Al_2O_3/(Fe_2O_3+FeO+MgO) = 0,5-1,9$, низко-, умереннощелочных ($Na_2O+K^2O < 8$ мас. %) габбродиоритов, диоритов, монцонитов и гранодиоритов с низким (<1) K_2O/Na_2O отношением в средних разновидностях. От средних к кислым дериватам постепенно растут отношения A/CNK (Al/(Ca+Na+K) от 0,52 до 0,95 и железистость Xfe (Fe/(Fe+Mg)) от 0,3 до 0,6.

Изотопный U-Pb возраст мезократовых пород Ольховского массива. Определение времени формирования Ольховского интрузива базируется на результатах U-Pb SIMS анализов цирконов из амфибол-клинопироксеновых кварцевых диоритов внешнего магматического кольца (скв. О-3, образцы О-3/7, О-3/11). Анализы выполнены в центре изотопных исследований ВСЕГЕИ на ионном микрозонде SHRIMP-II по стандартной методике следуя процедуре, описанной в [11].

Выделенные из образца весом около 1 кг цирконы (более 200 зёрен) представлены прозрачными и полупрозрачными призматическими кристаллами и обломками кристаллов. Около половины кристаллов содержат непрозрачные включения.

По внутреннему строению изученные цирконы близки и характеризуется тонкой осцилляционной зональностью (рис. 3),

Таблина

Количественно-минеральный состав образцов типовых пород Ольховского массива													
Но- мер п/п	Сква- жина	Глу- бина, м	Наименование породы	Pl	№ Pl	Opx	Срх	Bt	Hbl	Qtz	Fsp	Рудные	Акцес- сории
1	8847	477,0	Двупироксеновый кварцевый габбродиорит	57,5 ±4,8	45	1 3,2 ±3, 1	9,5 ±4,1	1,5 ±0,4	4,2 ±1,0	6,9 ±0,6	5,2 ±1,6	1,6 ±0,9	0,5 ±0,3
2	O-3		Амфибол-клинопи- роксеновый кварце- вый диорит	62,1 ±1,0		0,9 ±0,7	15,1 ±1,7	+	7,5 ±2,7	7,7±0,6	4,6 ±1,8	2,0 ±1,3	0,1 ±0,0
3	8847	411,0	Амфибол-двупи- роксеновый кварце- вый диорит	56,6 ±6,2		6,6 ±1,6	11,0 ±3,9	2,8 ±1,1	7,1 ±2,1	7,9 ±2,8	5,7 ±0,9	1,6 ±0,9	0,3 ±0,1
4	8846	600,0	Ортопироксеновый амфибол-биотитсо- держащий кварце- вый монцодиорит	58,9 ±1,3	35	7,6 ±3,6	1,6 ±0,9	4,7 ±1,2	3,6 ±0,8	11,4 ±1,7	10,4 ±2,4	1,5 ±0,6	0,3 ±0,2
5	8846	532,0	Амфибол-ортопи- роксен-биотитовый кварцевый монцо- диорит	50,5 ±3,1	31	1,6 ±0,5	6,2 ±2,0	8,7 ±2,3	5,1 ±1,6	14,9 ±1,2	12,0 ±1,7	0,8 ±0,3	0,2 ±0,1
6	8846	712,5	Биотит-амфи- бол-двупироксено- вый кварцевый монцодиорит	45,9 ±5,3	37	8,7 ±2,7	4,8 ±1,3	5,6 ±1,8	7,0 ±1,3	11,6 ±1,8	12,6 ±2,1	3,5 ±2,8	0,2 ±0,2
7	8846	383,6	Биотит-амфи- бол-клинопироксе- новый кварцевый монцодиорит	38,4 ±7,0	33	1,8 ±1,2	10,9 ±7,3	5,5 ±0,9	7,3 ±1,1	14,2 ±2,6	19,3 ±2,1	2,4 ±0,7	0,2 ±0,1
8	8846	422,0	Биотит-амфиболо- вый пироксенсо- держащий граноди- орит	39,0 ±2,9	33	1,4 ±0,9	3,4 ±1,2	7,3 ±2,0	7,4 ±1,7	21,1 ±1,9	19,4 ±2,0	0,9 ±0,5	0,1 ±0,1
9	0-2	429,1	Амфибол-биотитсо- держащий лейко- гранолиорит	57,8 ±4,3	20	-	—	2,2 ±0,8	0,6 ±0,3	25,4 ±5,1	12,7 ±3,3	0,7 ±0,2	0,5 ±0,1

Примечание. Количественно-минеральный подсчет в шлифах осуществлен линейным методом (объектив 10^x, расстояние между линиями 1 мм, число линий в одном шлифе 10).

что предполагает их исходную магматическую природу. Все цирконы содержат умеренные количества Th и U (89-247 и 60-230 ppm соотвественно), Th/U отношения варьируют от 0,89 до 0,57.

По возрастным характеристикам цирконы достаточно однородны. Условно можно выделить два кластера, эллипсы ошибок для которых перекрываются, что может быть связано как с погрешностью анализа. так и с двустадийностью кристаллизации пород. Это зёрна с конкордантными определениями U-Pb возраста 4, 5, 11 (средний Pb-Pb возраст 2053 млн. лет) и 6, 8, 9 (средний Рb-Рb возраст 2073 млн. лет).

Датированные цирконы (11 анализов в центральных частях кристаллов) образуют единую группу со средневзвешенным 207 Pb/²⁰⁶Pb возрастом 2070±4 млн. лет, CKBO = 1,01 при вероятности 0,43, что в пределах ошибки совпадает с конкордантным U-Pb возрастом 2065±9,9 млн. лет СКВО = 0,16 (рис. 4).

Минералогические и изотопные данные свидетельствуют о том, что полученная оценка изотопного возраста отражает время кристаллизации кварцевых диоритов Ольховского массива, которые формировались в период активного (2050-2070 млн. лет) постколлизионного магматизма в восточной части Воронежского кристаллического массива [4].

Относительный возраст терригенной части воронежской свиты составляет около 2065 млн. лет, так как конгломераты в ней содержат гальку трондьемитов усманского комплекса [1] с интервалом изтопных U-Pb конкордантных и дискордантных возрастов 2047±11-2066±28 млн. лет [5]. То есть, накопление конгломератов воронежской свиты происходило в относительно узкий интервал времени (постусманский, доольховский), вероятно, продолжительностью не более 1-2 млн. лет.

Рис. 4. Цирконы в кварцевых диоритах Ольховского массива (катодная люминесценция). Здесь и на рис. 5 номера аналитических точек соответствуют приведенным в табл. 2

гезультаты О-го исследовании цирконов из кварцевых диоритов Ольховского массива (скв. О-5, ооразцы О-5/7, О-5/11)															
Номер анализа	²⁰⁶ Pb _c	U, ppm	Th, ppm	$\frac{232\text{Th}}{238\text{U}}$	²⁰⁶ Pb*, ppm	(1) Возраст ²⁰⁶ Pb ²³⁸ U млн. лет	(1) Возраст ²⁰⁷ Рb ²⁰⁶ Рb млн. лет	D,%	(1) $\frac{207 \text{Pb}*}{206 \text{Pb}*}$	±,%	$\frac{(1)}{\frac{207 \text{Pb}^*}{235 \text{U}}}$	±,%	(1) $\frac{206 \text{Pb}^*}{238 \text{U}}$	±, %	Корреля- ция ошибок
Зёрна с ненарушенной РЬ-И изотопной системой															
4	0,10	96	86	0,92	31,1	2056±18	2055±17	-0,1	2,661	1,0	0,1268	0,96	6,571	1,4	0,3758
9	0,09	163	124	0,78	53,4	2075±16	2074±13	0,0	2,633	0,88	0,1282	0,72	6,712	1,1	0,3797
6	0,01	93	71	0,78	30,3	2069±19	2070±18	0,0	2,642	1,1	0,1279	0,99	6,676	1,5	0,3784
8	0,07	102	60	0,61	33,2	2075±18	2076±16	0,0	2,633	10	0,1284	0,90	6,721	1,3	0,3797
11	0,09	145	83	0,59	46,7	2049±16	2059±14	0,5	2,672	0,90	0,1272	0,77	6,563	1,2	0,3742
5	0,49	89	68	0,79	28,8	2054±19	2068±26	0,7	2,661	1,1	0,1278	1,40	6,61	1,8	0,3753
Зёрна с нарушенной РЬ-И изотопной системой															
1	0,09	99	67	0,70	31,7	2040±18	2086±18	2,3	2,685	1,00	0,1291	1,00	6,629	1,5	0,3723
2	0,09	102	70	0,71	32,3	2024±18	2070±17	2,3	2,711	1,00	0,1280	0,94	6,507	1,4	0,3688
10	0,07	247	230	0,96	78,3	2022±14	2070±13	2,4	2,715	0,82	0,1280	0,71	6,498	1,1	0,3683
7	0,05	192	180	0,97	60,3	2008±15	2071±11	3,1	2,736	0,84	0,1280	0,65	6,451	1,1	0,3655
3	0,26	218	193	0,92	60,7	1806±13	2074±13	14,8	3,090	0,83	0,1282	0,73	5,719	1,1	0,3234

Результаты U-Pb исследований цирконов из кварцевых диоритов Ольховского массива (скв. О-3, образцы О-3/7, О-3/11)

Таблица 2

Примечание. Ошибки для интервала ±1; Pb_c и Pb* — нерадиогенный и радиогенный свинец соответственно; (1) — коррекция на Pb_c по измеренному ²⁰⁴Pb; D, % — дискордантность 100 [(возраст ²⁰⁷Pb/²⁰⁶Pb)/(возраст ²⁰⁶Pb²³⁸U) — 1]; ошибки калибровки — 0,39; анализы выполнены в Центре изотопных исследований ВСЕГЕИ, аналитик: А.Н. Ларионов.

Рис. 5. Изотопные свинцово-урановые отношения и распределение ²⁰⁷Pb/²⁰⁶Pb возраста (на врезке) в цирконах из кварцевых диоритов (скв. О-3)

Выводы

Приведённые петрографические, петрохимические и изотопные данные позволяют сформулировать следующие выводы:

1. Породы внешнего магматического кольца Ольховского массива относятся к известково-щелочной кварцдиорит-кварцмонцодиорит-гранодиоритовой серии, в отличие от считавшегося ранее преобладания дериватов основного состава. 2. Время кристаллизации 2065±9,9 млн. лет кварцевых диоритов внешнего магматического кольца, согласующиеся с временем кульминации гранитоидного магматизма в Воронцовском террейне, позволяет относить Ольховский массив к позднеорогенным образованиям.

3. Относительный возраст конгломератов воронежской свиты, постусманский, доольховский, позволяет оценить время их накопления в абсолютном выражении около 2065 млн. лет.

ЛИТЕРАТУРА

- 1. Зайцев Ю.С. Докембрийские конгломераты восточной части Воронежского кристаллического массива // Известия АН СССР. Серия геол. 1979. № 11. С. 23–30.
- Рыборак М.В. О минеральном составе и номенклатуре основных пород Ольховской кольцевой интрузии // Вестник ВГУ. Сер. геологическая. 1996. №2. С. 48-51.
- Рыборак М.В. Геология, петрология и металлогеническая специализация Ольховского кольцевого габбронорит-кварцмонцонит-гранитного плутона (Воронежский кристаллический массив). Автореф. дис. ... канд. геол.-мин. наук. Воронеж, 1999. 24 с.
- 4. Савко К.А., Самсонов А.В., Ларионов А.Н., Ларионова Ю.О., Базиков Н.С. Одновозрастные А и S граниты востока Воронежского кристаллического массива: геохимия, петрогенезис, следствия для эволюции коры в палеопротерозое // Петрология. 2014. Т. 22. № 3. С. 235–264.
- 5. Скрябин В.Ю., Терентьев Р.А. Трондьемит-гранодиоритовый интрузивный магматизм Лосевской структурно-формационной зоны Воронежского кристаллического массива // Докл. РАН. 2014. Т. 458. № 3. (в печати).
- 6. Щипанский А.А., Самсонов А.В., Петрова А.Ю., Ларионова Ю.О. Геодинамика восточной окраины Сарматии в палеопротерозое // Геотектоника. 2007. № 1. С. 43-70.
- 7. Чернышов Н.М., Баянова Т.Б., Левкович Н.В., Рыборак М.В. Возраст пород ранней фазы Ольховского габбронорит-кварцмонцонит-гранитного кольцевого комплекса Воронежского кристаллического массива // Докл. РАН. 1998. Т. 359. № 5. С. 680–682.

- Чернышов Н.М., Рыборак М.В., Альбеков А.Ю., Баянова Т.Б. U-Pb-возраст гранитоидов Ольховского колыцевого плутона Воронежского кристаллического массива (северная часть зоны сочленения Сарматии и Волго-Уралии) // Докл. РАН. 2012. Т. 444. № 2. С. 198-201.
- Bogdanova S.V., Gorbatschev R., Garetsky R.G. East European Craton// Selley R.S., Robin L., Cocks M., Plimer I.R (Eds.) Enceclopedia of Geology. V. 2. Amsterdam: Elsevier, 2005. P. 34–49.
- Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks // Canadian J. Earth Sci. 1971. V.8. P. 523–548.
- Larionov A.N., Andreichev V.A. & Gee D.G. The Vendian alkaline igneous suite Northern Timan: zircon ages of gabbros and syenites // Gee D.G., Pease V. (Eds.) The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Society, London, Memoirs, 2004. V. 30, P. 69–74.
- 12. Middlemost, E.A.K. Naming materials in the magma/igneous rock system // Earth Sci. Rev. 1994. V. 37. P. 215-224.
- Streckeisen A. To each plutonic rock its proper name // Earth Sci. Rev. 1976. V. 12. P. 1-33.

Воронежский государственный университет (394006, г. Воронеж, Университетская пл., д. 1; е-mail: terentiev@geol.vsu.ru)

Рецензент – Л.Н. Липчанская

УДК 556.314; 556.332.4.042

Н.В. ФИСУН, А.А. ШАПИН

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ПОНИЖЕНИЯ И КАЧЕСТВА ПОДЗЕМНЫХ ВОД В УСЛОВИЯХ ПРЕРЫВИСТОГО РЕЖИМА ВОДООТБОРА

Ключевые слова: прерывистый режим работы водозабора; динамический уровень; восстановление; железо; мутность воды.

Эксплуатация водозаборов в режиме прерывистого водоотбора на практике наблюдается достаточно часто. В таком режиме, например, работают заводы промышленного розлива подземных вод, водозаборы централизованного и нецентрализованного водоснабжения, в технологической схеме которых предусмотрено резервирование воды в накопительных ёмкостях. При этом частота включения и отключения насоса может быть самой различной – от нескольких десятков минут до нескольких часов. Наиболее сложная ситуация создаётся на заводах розлива, когда прерывистый водоотбор характеризуется частыми отключениями и запусками скважины в течение суток (через 10—30 мин.), что обычно регулируется работой цеха розлива в автоматическом режиме. При оценке запасов подземных вод в таких случаях решается вопрос о методике проведения опытных работ. Общепринятой является технология проведения откачки в режиме постоянного дебита на две ступени понижения: при величине дебита, соответствующей среднесуточному водоотбору, и при дебите, равном реальной нагрузке на скважину в момент её включения. В этом случае возникает проблема отвода избыточных объёмов воды, особенно на второй ступени, а также оценки качества подземных вод при откачке, поскольку его формирование в прерывистом водоотборе может иметь специфику, в отличие от режима откачки с постоянным дебитом.

Сопоставление результатов опытных работ, выполненных в разных режимах водоотбора, показано на примере опытной от-