УДК 551.71/72

МЕГАБЛОК САРМАТИЯ КАК ОСКОЛОК СУПЕРКРАТОНА ВААЛБАРА: КОРРЕЛЯЦИЯ ГЕОЛОГИЧЕСКИХ СОБЫТИЙ НА ГРАНИЦЕ АРХЕЯ И ПАЛЕОПРОТЕРОЗОЯ

© 2017 г. К. А. Савко*, А. В. Самсонов**, В. М. Холин*, Н. С. Базиков*

*Воронежский государственный университет, Воронеж

**Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН (ИГЕМ РАН), Москва

e-mail: ksavko@geol.vsu.ru Поступила в редакцию 27.06.2016 г.

Результаты корреляции геологических событий в интервале 2.8-2.0 млрд лет предполагают принадлежность к древнему суперкратону Ваалбара, состоящему из кратонов Пилбара и Каапвааль, еще одного литосферного сегмента – мегаблока Сарматия, который выделяется в южной части Восточно-Европейского кратона. В интервале 2.80-2.60 млрд лет все они представляли собой фрагменты континентальной коры, консолидированной около 2.8 млрд лет назад и претерпевшей континентальный рифтогенез, сопровождавшийся мощным базитовым вулканизмом. В интервале 2.60-2.45 млрд лет для всех трех кратонов была сходная тектоническая обстановка и происходило накопление железисто-кремнистых формаций. Именно железисто-кремнистые формации крупнейших железорудных бассейнов Трансвааль, Хамерсли, Курского и Кременчугско-Криворожского, сформировавшиеся в едином океаническом бассейне в интервале около 2.50-2.45 млрд лет, лежат в основе успешных палеотектонических реконструкций суперконтинента Ваалбара. В интервале 2.45-2.20 млрд лет на всех трех кратонах отмечается длительный перерыв в осадконакоплении. В конце этого интервала произошла активизация процессов континентального рифтогенеза с терригенным осадконакоплением, завершившимся базитовым вулканизмом около 2.2 млрд лет назад. После этого рубежа начался распад Ваалбары, который был сложным многоактным процессом: составлявшие суперконтинент части то расходились, то снова сближались, пока кратоны Каапвааль и Зимбабве, Пилбара и Йилгарн, Сарматия и Волго-Уралия, соответственно, окончательно не объединились.

Ключевые слова: Ваалбара, Каапвааль, Пилбара, Сарматия, железисто-кремнистые формации, базитовый вулканизм, терригенное осадконакопление, корреляция геологических разрезов **DOI:** 10.7868/S0869592X17020065

введение

Наиболее древняя архейская кора с возрастом более 2.7 млрд лет составляет около 50 об. % континентальной литосферы Земли и известна в составе всех современных континентов. На сегодня эта архейская кора представлена 35 крупными и многочисленными мелкими фрагментами, большинство из которых имеют тектонические границы палеопротерозойского (2.5-1.7 млрд лет) возраста (Bleeker, 2003). Это говорит о том, что тектонически разобщенные в палеопротерозойское время архейские блоки исходно были объединены в более крупные континентальные массы. состав и возраст которых является предметом острых дискуссий. В настоящее время обсуждается несколько моделей строения континентальной литосферы в архее с существованием одного, двух или нескольких суперкратонов (Aspler, Chiarenzelli, 1998; Barley et al., 2005; Bleeker, 2003; Cheney, 1996; Condie, Rosen, 1994). Для "сбора пазлов"

ские континентальные массы привлекаются те же методы палеотектонических реконструкций, которые широко используются для более поздних этапов геологической эволюции Земли. Для разобщенных блоков на основе геохронологических, петрологических и палеомагнитных данных проводятся корреляции с использованием в качестве маркеров вулканогенно-осадочных, субвулканических и интрузивных пород. Примером успешного применения всего ком-

осколков архейских блоков в палеопротерозой-

плекса методов являются блоки коры мезоархейской (~2.8 млрд лет) консолидации, на которой сохранившиеся платформенные осадки раннего палеопротерозоя служат хорошими маркерами для корреляции и палеотектонических реконструкций с выделением древнего суперконтинента или суперкратона Ваалбара. Опорными объектами для выделения этого суперкратона служат кратоны Каапвааль (ЮАР) и Пилбара (Австралия)

Рис. 1. Схематическая структурная карта Сарматии, составленная по (Bogdanova et al., 2013) для Украинского щита и по собственным материалам для Воронежского кристаллического массива. Схема сегментов Восточно-Европейского кратона по (Gorbatschev, Bogdanova, 1993).

Аббревиатуры: ГСЗ – Голованевская сутурная зона, ИКСЗ – Ингулец-Павлоградская сутурная зона, ОПСЗ – Орехово-Павлоградская сутурная зона, ОМП – Осницко-Микашевичский пояс.

(Beukes, Gutzmer, 2008; Cheney, 1996; de Kock et al., 2009, 2012; Eriksson, Condie, 2014; Nelson et al., 1999).

В настоящей статье обоснована возможная принадлежность к Ваалбаре еще одного литосферного сегмента с мезоархейской корой – мегаблока Сарматия, который выделяется в южной части Восточно-Европейского кратона (Gorbatschev, Bogdanova, 1993; Shchipansky, Bogdanova, 1996). Этот кратон служит фундаментом одноименной платформы и представляет собой крупный фрагмент раннедокембрийской литосферы, обособленный в неопротерозое в ходе распада суперконтинента Родиния (Bogdanova et al., 2008). Наиболее обоснованной на сегодня представляется тектоническая модель, согласно которой в строении Восточно-Европейского кратона принимают участие три различных раннедокембрийских мегаблока: Фенноскандия, Сарматия и Волго-Уралия (рис. 1), спаянные коллизионными орогенами в конце палеопротерозоя (Bogdanova et al., 2006, 2008; Claesson et al., 2001; Shchipansky, Bogdanova, 1996). Эта модель подтверждается контрастными различиями в составе, возрасте и истории формирования Фенноскандии и Сарматии, выведенных на поверхность, соответственно, в северной части Восточно-Европейского кратона на Балтийском щите и в южной части этого кратона на Украинском щите и Воронежском кристаллическом массиве (рис. 1).

В Фенноскандии архейская кора сложена преобладающими по объему неоархейскими (2.8-2.7 млрд лет) тоналит-трондьемит-гранодиоритовыми (ТТГ) гнейсами и гранитоилами при подчиненном распространении гранит-зеленокаменных поясов с возрастом 3.0-2.8 млрд лет и ТТГ-гнейсовых блоков с возрастом 3.2-3.0 млрд лет (Hölttä et al., 2008). В раннем палеопротерозое эта архейская кора претерпела многочисленные дискретные эпизоды внутриплитного базитового магматизма (2.51, 2.45, 2.41, 2.31, 2.21, 2.13, 1.97 млрд лет назад), в результате которых сформировались рои даек, расслоенные интрузии и траппы (Степанова и др., в печати; Puchtel et al., 1998; Stepanova et al., 2014, 2015; Vuollo, Huhma, 2005). В Сарматии, в отличие от Фенноскандии, архейская кора включает два крупных палеоархейских (>3.2 млрд лет) блока и общирные мезоархейские (3.2-2.8 млрд лет) гранит-зеленокаменные и гранитогнейсовые ареалы (Бибикова и др., 2013, 2015; Claesson et al., 2006; Lobach-Zhuchenko et al., 2014; Samsonov et al., 1993, 1996). В раннем палеопротерозе в интервале 2.5-2.2 млрд лет в Сарматии отсутствовал магматизм и происходило интенсивное осадконакопление, включая формирование железисто-кремнистых формаций (ЖКФ). Столь контрастные различия в составе и возрасте Фенноскандии и Сарматии указывают на различную историю их формирования: эти мегаблоки на протяжении архея и раннего палеопротерозоя, вероятно, были пространственно разобщены и принадлежали к разным суперкратонам. Архейская Восточная Фенноскандия по истории геологического развития хорошо сопоставляется с кратоном Сьюпериор Канадского щита и рассматривается большинством исследователей в составе суперкратона Сьюпериа (Bleeker, 2003; Hölttä et al., 2008). Напротив, Сарматия до сих пор не вовлекалась в палеотектонические реконструкции, возможно, из-за слабой вещественной и геохронологической изученности. Однако за последние несколько лет были получены прецизионные датировки раннедокембрийских комплексов пород и изотопно-геохимические данные, позволяющие по-новому взглянуть на последовательность геологических событий формирования коры Сарматии. Реконструкция геологических событий на рубеже архей-палеопротерозой в Восточной Сарматии позволяет обнаружить близкое сходство ее геологической истории формирования с таковой суперконтинента Ваалбара. Цель настоящей статьи – провести корреляцию событий осадконакопления, вулканизма, магматизма и метаморфизма мегаблока Сарматия и суперкратона Ваалбара в интервале 2.6–2.2 млрд лет и на этой основе сделать выводы о положении Сарматии по отношению к известным раннедокембрийским кратонам литосферы.

5

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ МЕГАБЛОКА САРМАТИЯ

Мегаблок Сарматия расположен в южной части Восточно-Европейского кратона. Северо-восточной границей Сарматии с Волго-Уральским мегаблоком служит общирный Волго-Донской ороген аккреционного типа (рис. 1), который состоит из ювенильных вулканогенно-осадочных и интрузивных комплексов среднего палеопротерозоя, маркирующих островодужный (2.20-2.10 млрд лет), коллизионный (около 2.07 млрд лет) и постколлизионный (2.07-2.05 млрд лет) этапы формирования этой крупной тектонической структуры (Бибикова и др., 2009; Савко и др., 2011, 2014а, 2014б, 2015а, 20156; Щипанский и др., 2007; Terentiev et al., 2016). Северо-западным ограничением Сарматии является Осницко-Микашевичский вулканоплутонический пояс, который сложен преимущественно гранитными батолитами, диоритами и габбро с возрастами 2.00-1.95 млрд лет и рассматривается как активная окраина на краю Сарматского мегаблока (Claesson et al., 2001).

Курский блок и Украинский шит представляют собой поднятия в фундаменте Восточно-Европейского кратона и являются наиболее изученными частями мегаблока Сарматия (рис. 1). Курский блок относится к северо-восточной части Сарматии и был отделен в фанерозое от Украинского щита Припятско-Днепрово-Донецким авлакогеном. Расчленение Сарматии не нарушило строения ее раннедокембрийских комплексов. Ряд структур Курского блока прослеживаются в Приазовском и Среднеприднепровском блоках Украинского щита (Shchipansky, Bogdanova, 1996). Большая часть палеопротерозойских и некоторые архейские супракрустальные толщи Курского блока имеют эквиваленты в пределах этих блоков Украинского щита (рис. 1).

В северной и северо-западной части Сарматии Осницко-Микашевичский вулкано-плутонический пояс срезает архейские структуры Украинского щита и отделяет ее от мегаблока Фенноскандии (рис. 1). Поэтому наибольшей сохранностью и представительностью отличаются архейские блоки и лежащие на них палеопротерозойские вулканогенно-осадочные толщи Восточной Сарматии, включающей Курский блок, Приазовский и Среднеприднепровский блоки Украинского щита. Дальнейшее обсуждение будет акцентировано на них.

Геологическое строение архейского фундамента

Сарматия состоит как минимум из двух архейских ядер на Украинском щите и Курском блоке, "сшитых" палеопротерозойским Севско-Ингулецким (Кировоградским) орогеном. Наиболее древними породами Сарматии являются тоналиты Приазовского и эндербиты Подольского блоков Украинского щита с возрастами около 3.65— 3.40 млрд лет (Бибикова и др., 2013; Лобач-Жученко и др., 2010; Bibikova, Williams, 1990; Claesson et al., 2006). Преобладающая часть Среднеприднепровского блока, сложенная ТТГ-ассоциацией днепропетровского комплекса и породами зеленокаменных поясов, сформировалась в интервале 3.2–3.0 млрд лет (Claesson et al., 2006; Samsonov et al., 1993, 1996).

Архейское основание Восточной Сарматии сложено ТТГ-гнейсами обоянского комплекса, в значительной степени мигматизированными (рис. 2). К сожалению, прецизионных оценок возраста формирования ТТГ-комплекса в Курском блоке пока нет. Единичные оценки модельного возраста по изотопному Sm-Nd отношению 3.6—3.4 млрд лет (Щипанский и др., 2007) предполагают их возраст не древнее мезоархея. В центральной части Курского блока среди ТТГ-гнейсов присутствует Курско-Бесединский домен гранулитов (Савко, 2000; Fonarev et al., 2006), сложенный разнообразным комплексом пород: метапелитами, ЖКФ, метагаббро-норитами и метапироксенитами (рис. 1, 2). Судя по результатам изотопно-геохимических Sm-Nd исследований $(T_{Nd}(DM) = 3.4$ млрд лет), источником сноса метапелитовых гранулитов служили породы древней континентальной коры (Савко и др., 2010). Это подтверждается возрастом детритовых цирконов 3277 ± 33 млн лет (Артеменко и др., 2006). Полученная для монацита из метапелита оценка возраста 2819 \pm 6 млн лет (TIMS) соответствует гранулитовому метаморфизму (Савко и др., 2010).

Зеленокаменные пояса Восточной Сарматии с возрастом 3.2–3.0 млрд лет выполнены породами конкской и белозерской серий. Конкская серия представлена толеитовыми метабазальтами, метакоматиитами, ЖКФ с подчиненным количеством метаандезитов и кислых метавулканитов в верхней части разреза (Стратиграфические..., 1985). Она несогласно перекрывается белозерской серией, представленной метатерригенными породами и ЖКФ. Вулканиты имеют подчиненное значение.

В Курском блоке зеленокаменные пояса развиты в нескольких протяженных, сложной линейно-петельчатой формы внутриконтинентальных рифтогенных структурах (рис. 2). Нижние части разрезов сложены метаморфизованными породами коматиит-базальтовой формации (Крестин, Юдина, 1988) михайловской серии, которые последовательно сменяются вверх по разрезу толеитовыми метабазальтами с ограниченным количеством прослоев метатерригенных пород, кислых метавулканитов и ЖКФ. Заканчивается разрез архейских отложений Восточной Сарматии монотонной толщей основных метавулканитов новокриворожской свиты мощностью 900–1000 м (Артеменко и др., 2015; Стратиграфические..., 1985) и локально развитыми ультракалиевыми риолитами (рис. 3) с возрастом 2610 ± 10 млн лет (Савко и др., 2015б). По данным Sm-Nd изотопии ($\epsilon_{Nd}(2610) = -6.4$; $T_{Nd}(DM) = 3436$ млн лет) они сформировались за счет плавления древней континентальной коры. Стратиграфическое положение кислых вулканитов установлено точно, так как на их коре выветривания с размывом и угловым несогласием залегают песчаники и конгломераты базальных горизонтов курской железорудной серии (рис. 3, 4).

Геологическое строение палеопротерозойских структур Восточной Сарматии

Отложения курской серии, включающие карбонатные, терригенные породы и ЖКФ, формировались на архейской платформе и имели площадное распространение, но сохранились от размыва только в узких линейных зонах юговосточно-северо-западного простирания. Эти структуры представляют собой внутриконтинентальные рифты, заложившиеся в середине палеопротерозоя около 2.2 млрд лет назад на архейской платформе. Наиболее крупные из них: на Украинском щите – Кременчугско-Криворожская структура шириной до 10 км и протяженностью до 300 км, в пределах Курского блока – западная Белгородско-Михайловская структура, состоящая из Белгородской и Михайловской синформ (рис. 1, 2, 4), и восточная Щигровско-Оскольская структура, включающая Тим-Ястребовскую и Волотовскую синформы; эти структуры протягиваются более чем на 550 км при ширине 8-40 км (рис. 1–3). Отложения палеопротерозоя Курского блока включают терригенно-хемогенные отложения курской серии и вулканогеннотерригенные породы оскольской серии (рис. 3, 4).

Палеопротерозойские осадочные толщи залегают в тех же протяженных структурах, где ранее сформировались зеленокаменные пояса (рис. 2). Учитывая продолжительную эволюцию коры Восточной Сарматии, неоднократные эпизоды коллизии и складчатости, разделяющие эпохи осадконакопления, и перерывы, сопровождаемые эрозией, присутствие разновозрастных супракрустальных пород в одних и тех же структурах не является свидетельством их накопления в этих структурах, а отражает их сохранность от эрозии между поднятых гнейсовых куполов (блоков) в синформах, возможно неоднократно просевших и деформированных.

<u>Курская серия</u> Курского блока (соответствует криворожской серии Украинского щита). В основании разрезов залегают грубообломочные поро-

том 25

Nº 2

2017

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

1 – обоянский комплекс; 2 – михайловская серия; 3 – лосевская серия; 4 – воронежская свита; 5 – воронцовская серия; 6 – курская серия; 7 – роговская свита; 8 – тимская свита; 9 – атаманский комплекс; 10 – стойло-николаевский комплекс; 11 – бобровский комплекс; 12 – павловский комплекс; 13 – усманский комплекс; 14 – шебекинский комплекс; 15 – лискинский комплекс; 16 – ольховский комплекс; 17 – золотухинский комплекс; 18 – смородинский комплекс; 19 – мамонский комплекс; 20 – новогольский комплекс; 21 – еланский комплекс; 22 – возраст магматических образований и метаморфических событий.

1 – ТТГ-ассоциация и метабазиты (AR₁₊₂); 2 – калиевые риолиты лебединской свиты неоархея (AR₂lb); 3 – стойленская и коробовская свиты курской серии (PR₁st+kr); 4 – роговская свита оскольской серии (PR₁rg); 5 – нижняя подсвита тимской свиты оскольской серии (PR₁tm₁); 6 – верхняя подсвита тимской свиты оскольской серии (PR₁tm₂); 7 – стойло-николаевский комплекс (γδPR₁sn); 8 – габброиды; 9 – возраст магматических образований; 10 – железистые кварциты; 11 – сланцы; 12 – доломиты; 13 – карбонатсодержащие сланцы; 14 – метариолиты; 15 – метаконгломераты; 16 – метапесчаники; 17 – метабазиты; 18 – углеродистые сланцы; 19 – кора выветривания; 20 – гранитоиды.

ды: метаконгломераты, метагравелиты и метапесчаники стойленской и игнатеевской свит (соответствуют скелеватской свите Украинского щита) (рис. 4). Разрез повсеместно распространенной стойленской свиты общей мощностью до 1 км состоит из двух частей: нижняя сложена кварцевыми конгломератами (в основании) и метапесчаниками с прослоями сланцев, кварцитов и доломитов, верхняя представлена углеродистыми и кварцслюдистыми сланцами с прослоями метапесчаников и редко карбонатных пород (рис. 3, 4). В скелеватской свите Украинского щита выделено два горизонта мощностью около 10 м хлориттальковых сланцев (Стратиграфические..., 1985),

Рис. 4. Схематическая геологическая карта Михайловской структуры.

1 — обоянский комплекс (AR₁ob); 2 — михайловская серия (AR₂mh); 3 — игнатеевская свита (PR₁ig); 4 — стойленская свита (PR₁st); 5 — коробковская свита (PR₁kr); 6 — роговская свита (PR₁rg); 7 — курбакинская свита (PR₁kb); 8 — золотухинский комплекс (vPR₁z); 9 — стойло-николаевский комплекс (γ \deltaPR₁sn); 10 — атаманский комплекс (γ PR₁at); 11 — возраст магматических образований и метаморфических событий; 12 — железистые кварциты; 13 — сланцы; 14 — доломиты; 15 — метаконгломераты; 16 — метапесчаники; 17 — метабазиты; 18 — метариолиты; 19 — гранитоиды.

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 25 № 2 2017

Рис. 5. Схема расположения палеопротерозойских ЖКФ Курского блока.

представляющих собой специфические недосыщенные калием магнезиальные умеренно-глиноземистые породы. Эквивалентами этих пород являются более высокометаморфизованные жедритантофиллитовые сланцы в составе стойленской свиты Курского блока (Савко, Кальмуцкая, 2002).

В Михайловской синформе в основании разреза курской серии выделена игнатеевская свита, сложенная метаконгломератами, метагравелитами и метапесчаниками мощностью до 450 м, которые перекрываются толщей доломитов мощностью до 160 м (рис. 4).

Отличительной особенностью строения нижнего палеопротерозоя Восточной Сарматии является присутствие мощных толщ ЖКФ коробковской свиты Курского блока и саксаганской свиты Украинского щита, слагающих крылья крупных палеопротерозойских синформ — Кременчугско-Криворожской на Украинском щите, Белгородской, Михайловской, Тим-Ястребовской, Волотовской и других в Курском блоке (рис. 2–5).

Палеопротерозойские ЖКФ Сарматии состоят исключительно из хемогенных и терригенноосадочных пород. Железисто-кремнистая формация Курского блока мощностью от первых метров до 1200 м согласно залегает на стойленской свите и перекрывается терригенно-карбонатными породами роговской свиты (рис. 4). В наиболее полных разрезах она сложена чередующимися толщами железистых кварцитов и сланцев. Хотя и отмечается латеральная изменчивость разрезов, в целом принимается схема четырехчленного деления ЖКФ: первая и третья подсвиты состоят из полосчатых железистых кварцитов, которые разделяются и перекрываются сланцевыми (второй и четвертой) подсвитами (рис. 4).

Нижняя подсвита железистых кварцитов имеет мощность до 750 м и сложена в основном магнетитовыми, грюнерит-магнетитовыми, рибекит-магнетитовыми и карбонатно-магнетитовыми железистыми кварцитами. В основании, кровле и внутри подсвиты возле сланцевых прослоев встречаются прослои кварцитов с низким содержанием магнгетита или без него мощностью до 5—10 м.

Нижняя подсвита сланцев разделяет между собой подсвиты железистых кварцитов. Она имеет мощность от нескольких метров до 120 м, реже больше и сложена в основном сланцами, нередко филлитовидными углеродисто-кварц-слюдяными, кварц-биотитовыми и кварц-мусковитовыми с пиритом и пирротином, иногда с гранатом и андалузитом.

Верхняя подсвита железистых кварцитов имеет мощность от первых десятков метров до 500—870 м. В составе подсвиты преобладают гематит-магнетитовые кварциты с подчиненными прослоями магнетит-гематитовых, гематитовых, грюнерит-магнетитовых, рибекит-магнетитовых и карбонатномагнетитовых кварцитов.

Верхняя подсвита сланцев завершает разрез ЖКФ. Она встречается только в пределах крупных синформ. Подсвита имеет мощность от нескольких метров до 400 м и сложена углеродистослюдистыми, кварц-мусковитовыми, кварц-хлоритмусковитовыми, кварц-мусковит-карбонатными сланцами.

Разрезы ЖКФ Кременчугского района Украинского щита схожи с разрезами ЖКФ Курского блока и имеют четырехчленное строение (чередующиеся горизонты железистых кварцитов и сланцев), а в Криворожском районе выделяют до семи железорудных и сланцевых горизонтов (Стратиграфические..., 1985).

Палеопротерозойские ЖКФ отличаются большим минералогическим разнообразием. Помимо гематитовых, гематит-магнетитовых и магнетитовых кварцитов встречаются разности с тетраферрибиотитом, селадонитом, ферришамозитом, рибекитом, стильпномеланом, грюнеритом, ферривинчитом, актинолитом, эгирином, Na-диопсидом, карбонатами (кальцит, ряд анкерит-доломит, сидерит) (Савко, Поскрякова, 2003а, 20036; Савко, 2006). В зонах повышенного метаморфизма может появляться гиперстен. Отметим, что в палеопротерозойской ЖКФ, за исключением биотита, отсутствуют глиноземсодержащие минералы (гранаты, плагиоклазы, роговые обманки, хлориты). Палеопротерозойские ЖКФ отличаются очень низкими содержаниями TiO₂ (<0.1 мас. %) и Al₂O₃ (<1 мас. %) и других петрогенных оксидов, редкоземельных элементов (содержание REE не превышает 21 ppm) (Савко и др., 2015в). Они сформировались в самом начале палеопротерозоя до Великого окислительного события (GOE ≈ 2.43 млрд лет) и представляют собой морские хемогенные породы без примесей детритового материала и существенного гидротермального привноса компонентов.

<u>Роговская свита.</u> На ЖКФ в Курском блоке согласно залегают отложения роговской свиты (соответствует гданцевской свите Украинского щита) мощностью свыше 300 м, представленной нижней карбонатно-сланцевой (сланцы с прослоями доломитов) и верхней карбонатной (доломиты) толщами (рис. 3, 4). Во всех без исключения случаях наблюдаются постепенные переходы от филлитовидных сланцев верхней сланцевой подсвиты ЖКФ к доломитам и сланцам роговской свиты.

Роговская свита развита в пределах Тим-Ястребовской, Волотовской, Михайловской и других структур и имеет мощность до 750 м (рис. 3, 4). В ее составе присутствуют две толщи. Нижняя мощностью от 40-80 до 300 м и более сложена филлитовидными, кварц-биотитовыми, двуслюдяными сланцами, нередко углеродистыми, иногда с гранатом, ставролитом и андалузитом, в полошве релко встречаются линзы брекчий. конгломераты, песчаники. Верхняя, сланцевокарбонатная, толща имеет мощность до 450 м и состоит из различных карбонатно-слюдяных, амфибол-биотит-карбонатных сланцев, в которых содержатся прослои (до 65 м) кальцитовых и доломитовых мраморов и кварц-слюдистых углеролистых сланцев. После их отложения фиксируется перерыв в осадконакоплении.

Так же как и роговская свита, гданцевская свита в Криворожском бассейне Украинского щита делится на нижнюю существенно кластогенную и верхнюю существенно карбонатную толщи (Стратиграфические..., 1985). В отличие от роговской свиты Курского блока, сланцево-доломитовая гданцевская свита в Кременчугском районе Украинского щита включает два горизонта ЖКФ, фациально сменяющихся железистыми сланцами. В Криворожском районе в составе гданцевской свиты ЖКФ отсутствуют.

Тимская свита. Породы тимской свиты с перерывом и небольшим угловым несогласием (~15°) могут залегать на отложениях различных стратиграфических уровней в Тим-Ястребовской структуре (рис. 3). Свита состоит из широко распространенных углеродистых сланцев с сульфидами с подчиненными прослоями метапесчаников, кварцитов, силикатно-карбонатных пород, а также вулканитов. Выделяются две толщи: нижняя (углеродисто-терригенная с небольшой примесью туфогенного материала) мощностью до 170 м и верхняя (существенно вулканогенная) (рис. 3).

Характерной особенностью нижней толщи является очень широкое распространение высокоуглеродистых сланцев (кварц-биотит-углеродистых, кварц-серицит-углеродистых, иногда карбонатсодержащих), в различной степени обогащенных сульфидами (пирит, пирротин), в нижних частях разреза с повышенными концентрациями марганца. Среди резко преобладающих углеродистых и высокоуглеродистых сланцев постоянно присутствуют прослои (до первых метров) безуглеродистых сланцев, метапесчаников, гравелитов, кварцитопесчаников, тонкополосчатых доломитов и известняков и амфиболитов. Завершают разрез кварц-биотитовые, кварц-мусковитовые сланцы с релкими прослоями кваршитопесчаников, доломитов, амфиболитов и известково-силикатных пород.

Разрез терригенно-вулканогенной верхней толщи включает в себя две латерально сменяющиеся пачки: (1) углеродистых и безуглеродистых полевошпат-кварц-биотитовых и двуслюдяных сланцев и (2) метабазальтов с редкими прослоями сланцев (рис. 3). Вулканиты приурочены к бортам и поднятиям внутри Тим-Ястребовской и Волотовской рифтовых структур (рис. 2, 3), представлены толеитовыми и щелочными базальтами и андезитобазальтами мощностью свыше 1.2 км и характеризуются отрицательными значениями $\varepsilon_{Nd}(2200) = -6.4$ (Савко и др., 2016). Мощность потоков составляет от 6 до 140 м. Базальты чередуются в основном с углеродистыми сланцами.

В стратиграфическом разрезе Украинского щита тимской свите Курского блока должна соответствовать глееватская свита (рис. 4), однако она отличается отсутствием в разрезе вулканитов и мощных слоев сульфидно-углеродистых сланцев. Отложения глееватской свиты установлены только в Криворожском районе (Стратиграфические..., 1985).

Палеопротерозойский интрузивный магматизм Восточной Сарматии представлен многочисленными массивами разнообразного состава (магматические породы от ультраосновных до кислых, щелочные породы и карбонатиты), прорывающими супракрустальные отложения и внедрившимися в постколлизионную стадию в интервале 2.07–2.05 млрд лет (Альбеков и др., 2012; Савко и др., 2014а). Независимо от состава, все они характеризуются отрицательными значениями $\varepsilon_{Nd}(2070-2050) = -4.0...-9.0$ (Бойко и др., 2014; Савко и др., 2014а).

ГЕОЛОГИЧЕСКИЕ СОБЫТИЯ В НЕОАРХЕЕ-ПАЛЕОПРОТЕРОЗОЕ ВОСТОЧНОЙ САРМАТИИ

Основные геологические события в истории Курского блока отражены на рис. 6. Важным событием в неоархее Сарматии является метаморфизм верхней амфиболитовой и гранулитовой фаций на рубеже 2.8 млрд лет. Он установлен на Украинском щите в пределах Орехово-Павлоградской зоны, разделяющей Приазовский и Среднеприднепровский блоки (Bibikova, Williams, 1990), в Днестрово-Бугском блоке (Claesson et al., 2006) по датированию метаморфогенных цирконов из тоналитовых гнейсов, а также в Курском блоке по датированию монацитов из метапелитовых гранулитов (Савко и др., 2010). Высокотемпературный метаморфизм завершил цикл формирования древнего мезоархейского фундамента Сарматии (рис. 6). После стабилизации платформы в интервале 2.8-2.6 млрд лет произошло заложение рифтовых структур и излияние лав преимушественно базальтового состава, что нашло свое отражение в формировании неоархейских метабазитов Восточной Сарматии (рис. 6).

Платформенная стадия

В основании разреза терригенно-хемогенных толщ Сарматии в Тим-Ястребовской структуре залегают калиевые риолиты с возрастом 2610 млн лет (Савко и др., 2015б) (рис. 3). На них развита кора выветривания, которая перекрывается конгломератами базального горизонта стойленской свиты палеопротерозоя (рис. 3). Эти отложения являются геохронологическим репером, маркирующим перерыв и начало образования морского бассейна, где впоследствии формировались палеопротерозойские ЖКФ (рис. 6).

После перерыва, фиксируемого высоким стоянием континента и развитием кор выветривания на калиевых риолитах, началось опускание территории и формирование обширного морского бассейна в результате трансгрессии с запада на восток. Накопление грубообломочных отложений игнатеевской свиты в Михайловской синформе и резкая смена их через гравелиты и песчаники карбонатными породами (рис. 4) свидетельствуют о быстрой трансгрессии, начавшейся в западной части Восточной Сарматии.

Весь разрез осадочных пород курской серии представляет единый цикл осадконакопления: песчано-глинистые отложения-хемогенные железисто-кремнистые породы-глинисто-песчаные отложения. Характерными являются небольшие (200-500 м) мощности отложений (вне зон интенсивной складчатости), постоянство их состава, постепенные переходы между фациями, значительные плошали селиментации – фрагменты пород курской серии встречаются на всей территории Курского блока (рис. 5), отсутствие вулканической деятельности. Формирование осадочных толщ проходило в обширном морском бассейне с нормальным распределением осадков (снизу вверх: псаммиты, алевриты, пелиты, железисто-кремнистые отложения) и накоплением

Рис. 6. Последовательность геологических событий в истории Курского блока Сарматии.

карбонатов на регрессивной стадии (роговская свита) (рис. 6, 7а, 7б). Завершение накопления мощных ЖКФ Восточной Сарматии совпадает с GOE (Савко и др., 2015в) и произошло приблизительно 2.45 млрд лет назад (рис. 6).

После накопления ЖКФ началась регрессия моря с образованием пологого сводового поднятия, что выразилось в захоронении ЖКФ под более мелководными фациями сланцев и далее карбонатными фациями и песчаниками (рис. 7в). Особенности литологического состава пород, отсутствие продуктов вулканической деятельности предполагают пассивный тектонический режим. Такой последовательности развития морского бассейна соответствует постепенная смена фаций: 1) фации песчаного пляжа; 2) терригенные прибрежно-морские фации; 3) углеродисто-терригенные фации; 4) хемогенно-терригенные фации, удаленные от прибрежной зоны; 5) хемогенные фации, наиболее глубоководные.

<u>Фации песчаного пляжа</u> представлены мономинеральными кластогенными кварцитами мощностью 20—30 м. В основании кварцитов залегает горизонт кварцевых метаконгломератов мощностью до 3 м. Выше залегают метагравелиты и грубозернистые метапесчаники. Они бывают обогащены рутилом и цирконом. Верхняя часть толщи сложена сливными кварцитами, которые в кровле образуют переходную зону, обогащенную прослоями слюдистых сланцев.

Терригенные прибрежно-морские фации представлены в основном двуслюдяными сланцами мощностью до 100 м. В кровле метапесчаниковой пачки появляются многочисленные сланцевые прослои, количество которых постепенно возрастает, пока они полностью не замещают метапесчаники. Непосредственно с железистыми кварцитами контактируют биотитовые филлитовидные сланцы, нередко углеродистые, с сульфидами. В приконтактовой зоне с железистыми кварцитами в сланцах присутствуют тонкие прослои безрудных кварцитов.

Углеродисто-терригенные фации представлены углеродистыми, слюдистыми сланцами мощностью до 100 м. Среди сланцев встречаются прослои доломитов мощностью до 2.5 м. В приконтактовой зоне с железорудными фациями среди сланцев встречаются прослои слаборудных и безрудных кварцитов мощностью от 5–10 см до 2 м. Углеродистые сланцы формировались на больших глубинах, куда попадал тонкий терригенный и органический материал в ассоциации с кремнистым и алевритовым веществом.

Хемогенно-терригенные фации — это полосчатые магнетит-грюнеритовые (биотитовые) и карбонатно-магнетитовые кварциты мощностью 70—100 м. Переход от сланцев к безрудным грубослоистым карбонатным и силикатным кварцитам сопровождается преобладанием тонких кремнистых илов, уменьшением количества глинистого материала, повышением содержаний магнетита (Плаксенко, 1966). В пластах этих кварцитов часто встречаются прослои грюнеритовых и биотитовых сланцев.

<u>Хемогенные фации</u> представлены гематитмагнетитовыми обычно тонкополосчатыми кварцитами мощностью более 140 м — самыми глубоководными членами фациального ряда. Это хемогенные породы, образованные из коллоидов железа и кремнезема почти без примеси пелитового материала. Прослои сланцев в них встречаются крайне редко.

Постепенные переходы от кварц-серицитовых, кварц-биотитовых сланцев верхней сланцевой толщи ЖКФ к перекрывающим ее карбонатсодержащим сланцам и псаммитовым доломитам свидетельствуют о регрессивном характере разреза. Наличие косой слоистости, прерывистый характер строения ритмов в верхних частях разреза. следы размывов, фиксируемые грубообломочными отложениями, указывают на формирование карбонатных отложений в условиях морских отмелей с частичным выведением в зону размыва ранее образованных пород. Нижняя часть разреза роговской свиты соответствует обстановкам мелководного моря и в этом отношении не отличается от отложений курской серии, верхняя часть роговской свиты соответствует обстановкам морских отмелей.

Таким образом, в интервале ~2.50-2.45 млрд лет в Восточной Сарматии господствовал режим пассивной континентальной окраины, предполагающий наличие к западу от нее океанических структур, на месте которых, возможно, образовался Кировоградский ороген. Формирование пород проходило в обширном морском бассейне с закономерным распределением осадков от береговой линии вглубь бассейна от псаммитов к алевритам, пелитам и ЖКФ с усиленным накоплением карбонатов на регрессивной стадии. Смена первичных фаций от мелководных к более глубоководным с востока на запад указывает на отложение ЖКФ на фоне общего опускания и трансгрессии моря с запада на восток. Береговая линия располагалась восточнее Тим-Ястребовской структуры, а наиболее погруженная часть бассейна – западнее Белгородской и Михайловской синформ.

Рифтовая стадия

После накопления мощных отложений ЖКФ в интервале ~2.50–2.45 млрд лет, отмечается регрессия моря и образование пологого сводового поднятия, что обусловило длительный перерыв в осадконакоплении, сопровождавшийся эрозией (рис. 6). В период ~2.4—2.2 млрд лет происходило заложение континентальных грабенообразных рифтогенных впадин в центральной части сводового поднятия (рис. 6, 7г). Часто в основании разреза тимской свиты залегает горизонт метаконгломератов, представляющий собой переотложенные продукты коры выветривания ЖКФ, сланцев, метабазитов, а присутствие в обломках ТТГ-гнейсов указывает на частичный размыв архейского фундамента (Холин и др., 1998).

Заполнение рифтов начинается с тонкообломочных молассоидных отложений, которые вверх по разрезу сменяются все более грубообломочными породами, и заканчивается разрез континентальными молассами. Это свидетельствует о первоначальном заложении впадины и лишь затем росте краевых поднятий. Зарождение впадин сопровождалось мощными ареальными излияниями базальтов (рис. 7г). Появление среди покровных вулканитов прослоев осадочных пород и увеличение вверх по разрезу их мощности указывает на начало образования впадин. Потоки базальтов среди метапесчаников присутствуют и в центральной части Тим-Ястребовской и Волотовской структур, а отдельные лавовые потоки мощностью от 3 до 30 м встречаются среди углеродистых сланцев. Вулканиты отмечаются и за пределами этих структур, в других небольших синформах, где залегают непосредственно на ЖКФ. Вулканическая деятельность проявлялась на плечах рифта, и лавовые потоки достигали рифтовой впадины. Прослои углеродистых сланцев среди базальтов фиксируют прерывистый характер вулканизма. По составу вулканиты отвечают типичным континентальным базальтам (Савко и др., 2016; Холин, 2001).

Верхние толщи базальтов формировались уже в условиях морского бассейна. Они залегают на углеродистых сланцах. В разрезе вместе с базальтами преобладают метаалевролиты, метаалевропесчаники, а карбонатные сланцы и доломиты имеют подчиненное значение.

Таким образом, на ранних этапах развития рифтов излияния базальтов происходили в субаэральных условиях, одновременно с отложением типичных молассоидных континентальных осадочных формаций типа косослоистых красноцветных песчаников, а также конгломератов и гравелитов. По мере развития рифтовых впадин базальтовые толщи формировались в условиях морского бассейна вместе с алевролитами, карбонатными сланцами и доломитами.

Коллизия и распад коллизионного орогена

После закрытия рифтогенных структур слагающие их породы претерпели метаморфизм и складкообразование в результате коллизионных процессов (рис. 6, 7д). Метаморфизм с возрастом около 2070 млн лет зафиксирован в Восточной Сарматии, начиная с восточной окраины (Воронцовский террейн) (2067 \pm 9 млн лет, ID TIMS, монациты; Савко и др., 2015а); восточнее Тим-Ястребовской структуры (2072 ± 7 млн лет, ID TIMS, монациты; наши неопубликованные данные); в Орехово-Павлоградской зоне на сочленении Приазовского и Среднеприднепровского блоков (2078 ± 8 млн лет, SHRIMP, каймы цирконов; Lobach-Zhuchenko et al., 2014). Причиной метаморфизма на восточной границе Сарматии, по-видимому, стала коллизия с Волго-Уралией на рубеже около 2100 млн лет (Щипанский и др., 2007). Это подтверждается уменьшением степени метаморфизма палеопротерозойских пород с востока на запад. В небольших палеопротерозойских синформах у восточной границы Сарматии температуры при региональном метаморфизме пород достигали 700°С при давлениях 5-6 кбар. Далее на запад, в Тим-Ястребовской структуре, Р-Т параметры уже не превышали 550°С и 3 кбар (Савко, Полякова, 2001; Polyakova et al., 2005), а в западной Михайловской синформе составляли не более 450°С и 2–3 кбар (Савко, Поскрякова, 2003а). Причиной метаморфизма, скорее всего, послужило увеличение теплового потока при вязких деформациях и складчатости (Савко и др., 2015а). Таким образом, в результате бокового стресса на месте рифтогенных впадин, заполненных вулканогенно-осадочными породами, образовались горноскладчатые сооружения.

После коллизионного события отмечается широкомасштабный магматизм в интервале 2070-2050 млн лет (рис. 6, 7е). В это время произошло внедрение многочисленных интрузий от основного до кислого и щелочного состава, связанное с распадом коллизионного орогена и уменьшением мощности коры, что сопровождалось магматическим андерплейтингом. Резкое увеличение теплового потока привело к плавлению древней архейской коры и контаминации ею мантийных расплавов. Такая модель подтверждается отрицательными значениями $\varepsilon_{Nd}(T)$ во всех магматических породах Восточной Сарматии. В это же время отмечается метаморфическое событие на рубеже 2069 млн лет (Савко и др., 2015а) и вспышка магматизма в интервале 2070-2050 млн лет в Воронцовском (Савко и др., 2014а) и Лосевском (Терентьев, 2014) террейнах (рис. 2), примыкающих к Сарматии с востока. Следовательно, к рубежу 2070 млн лет на востоке Сарматии сформировался коллизионный ороген, распад которого спровоцировал магматический андерплейтинг, резкое увеличение теплового потока, коровое плавление, контаминацию мантийных расплавов коровыми и внедрение огромного количества магм разнообразного состава.

№ 2 2017

том 25

САВКО и др.

Рис. 7. Схема образования палеопротерозойских рифтогенных структур Восточной Сарматии.

архейское кристаллическое основание; 2 – базальты; 3 – калиевые риолиты; 4 – конгломераты; 5 – песчаники;
6 – сланцы; 7 – железисто-кремнистые формации; 8 – карбонатные породы; 9 – углеродистые сланцы; 10 – гранитоиды стойло-николаевского комплекса.

Рис. 7. (Окончание.)

КОРРЕЛЯЦИЯ ГЕОЛОГИЧЕСКИХ РАЗРЕЗОВ ВААЛБАРЫ И ВОСТОЧНОЙ САРМАТИИ

Существующие корреляции мегаблоков Каапвааль и Пилбара начинаются с 2.77 млрд лет на основании палеомагнитных данных и сходства вулканогенных разрезов групп Фортескью и Вентерсдорп (de Kock et al., 2009). Рифтообразование на континенте Ваалбара началось около 2775 млн лет назад и сопровождалось накоплением большого объема основных лав (Wingate, 1998, 1999). Группы Вентерсдорп (Каапвааль) и Фортескью (Пилбара) имеют близкий возраст (2.78–2.64 млрд лет), строение и состав (de Kock et al., 2009).

Признаком кратонизации Сарматии в неоархее может служить возраст гранулитового метаморфизма около 2.8 млрд лет (Савко и др., 2010; Bibikova, Williams, 1990). Поэтому можно полагать, что образование рифтогенных структур, мафитовый вулканизм и осадконакопление в них имели место в интервале 2.8–2.6 млрд лет (рис. 6). Накопление неоархейских осадочно-вулканогенных толщ завершилось излиянием ультракалиевых риолитов, на которых залегают палеопротерозойские ЖКФ в Курском блоке.

Неоархейские осадочно-вулканогенные разрезы под ЖКФ Ваалбары и Сарматии имеют определенное сходство (рис. 8). Метабазитовые толщи новокриворожской свиты Украинского щита и михайловской серии Курского блока близки по времени образования к аналогичным толщам Ваалбары (2.8–2.6 млрд лет), в их основании отмечаются потоки перидотитовых и базальтовых метакоматиитов.

Позже 2.6 млрд лет разрезы метаосадочных и вулканогенных толщ Восточной Сарматии и Ваалбары обнаруживают удивительное сходство (рис. 8). На кратонах Каапвааль и Пилбара мощные толщи ЖКФ залегают на неоархейских карбонатных платформенных отложениях Кэмпбеллрэнд-Мэлмени в железорудном бассейне Трансвааль (Beukes et al., 1990; Klein, Beukes, 1989) и на доломитах Уиттенум в бассейне Хамерсли (Jahn, Simonson, 1995), сформировавшихся в интервале 2.6–2.5 млрд лет (Sumner, Beukes, 2006) (рис. 8). Роль такого карбонатного основания для ЖКФ Сарматии выполняет доломитовая толща игнатеевской свиты мощностью до 160 м (рис. 8) в Михайловской синформе.

На неоархейских доломитах в Курском блоке согласно залегает терригенная толща стойленской свиты (рис. 8), состоящая из двух частей: нижняя сложена кварцевыми конгломератами (в основании) и метапесчаниками с прослоями сланцев, кварцитов и доломитов, верхняя представлена углеродистыми и кварц-слюдистыми сланцами с прослоями метапесчаников и карбонатных пород. Мощность толщи в наиболее полных разрезах превышает 500 м. По стратиграфическому положению и набору пород нижнюю терригенную толщу можно сопоставить с толщей Би Гордж (2565 ± 9 млн лет) (Trendall et al., 2004), а верхнюю терригенную толщу с широким развитием углеродистых сланцев можно коррелировать с углеродистыми сланцами формации Маунт Макрэй (2501 \pm 8 млн лет, блок Пилбара) и сланцами Клейн Нот (Каапвааль) (Beukes, Gutzmer, 2008), залегающими на карбонатной платформе и перекрытыми ЖКФ (рис. 8). Причем кремнистые слои в верхних частях разреза сланцевых толщ Колониал Черт в бассейне Хамерсли и Клифуис в бассейне Трансвааль, непосредственно подстилающие железисто-кремнистые формации Брокман и Куруман, отвечают "безрудным" кварцитам в основании разреза ЖКФ Сарматии.

Железисто-кремнистые формации Сарматии включают четыре толщи: нижнюю железорудную, нижнюю сланцевую, верхнюю железорудную и верхнюю сланцевую. Точно на такие же четыре толщи делятся ЖКФ Брокман в бассейне Хамерсли (нижняя железорудная Дэйлс Гордж, нижняя сланцевая Уэйлбэк, верхняя железорудная Джоффр и верхняя сланцевая Яндикугина) и Куруман в бассейне Трансвааль (нижняя железорудная Стофбэккис, нижняя сланцевая Буисвлей, верхняя железорудная Орэнж Вью и верхняя сланцевая Уэстерберг) (рис. 8).

В отличие от кратонов Каапвааль и Пилбара, супракрустальные толщи Сарматии подверглись более высокотемпературному метаморфизму и интенсивной складчатости 2070 млн лет назад. Железисто-кремнистые формации Сарматии были метаморфизованы при 450-550°С и давлениях 2-3 кбар (Савко, Поскрякова, 2003а, 2003б; Савко, 2006). При таких условиях стильпномелан разлагается с образованием грюнерита и биотита в железистых кварцитах, граната и биотита в сланцах (Miyano, Klein, 1989). Поэтому эквивалентом железистых кварцитов и сланцев Ваалбары со стильпномеланом являются грюнеритовые и биотитовые железистые кварциты и биотитгранатовые сланцы Сарматии, в которых стильпномелан сохраняется очень редко (Савко, Поскрякова. 2003а. 20036: Савко и др., 2003). В результате рифтогенеза, коллизии и складчатости ЖКФ и перекрывающие их отложения Сарматии оказались зажатыми и смятыми в складки преимущественно в двух протяженных поясах шириной 8–30 км и длиной свыше 150 км (рис. 1, 2). Тем не менее некоторые очевидные сходства разрезов палеопротерозоя Сарматии с таковыми Ваалбары сохранились.

После формирования перекрывающих ЖКФ терригенно-карбонатных отложений Сарматии фиксируется длительный перерыв в осадконакоплении, которое возобновляется на начальной стадии континентального рифтогенеза, когда на-

чинают отлагаться вулканогенно-осадочные породы (рис. 6). В случае эрозии карбонатных толщ во время перерыва, вулканиты могут перекрывать непосредственно ЖКФ. Такой же длительный перерыв отмечается в кратоне Пилбара в интервале 2.45–2.20 млрд лет (Eriksson, Condie, 2014). В отличие от кратона Пилбара, в кратоне Каапвааль присутствуют гляциальные отложения (формация Макганьен) с возрастом 2430-2316 млн лет (Eriksson, Condie, 2014), но позже вплоть до рубежа 2.2 млрд лет здесь также не фиксируется геологических событий. К сожалению, продолжительность перерыва для Сарматии неизвестна, но, судя по сходству разрезов тимской свиты Сарматии и групп Тури Крик и Лоуэр Уайлу в блоке Пилбара (рис. 8), длительность этого перерыва была такой же: 2.45-2.20 млрд лет.

После перерыва в осадконакоплении на Курском блоке в основании осадочно-вулканогенного разреза залегает горизонт сланцев и метаконгломератов, представляющий собой переотложенные продукты коры выветривания ЖКФ. Признаки такой коры выветривания фиксируются как под конгломератами, так и непосредственно под углеродистыми сланцами. Сланцы в низах толщи иногда содержат железистый кластогенный материал. Точно такой же тип разреза отмечается в основании группы Тури Крик в кратоне Пилбара (Cheney, 1996). Все это свидетельствует о наличии пологого сводового поднятия в пределах Восточной Сарматии и Ваалбары, сформированного до накопления вулканогенно-осадочных толщ тимской свиты (Курский блок), группы Тури Крик (Пилбара) и формации Дуйчлэнд (Каапвааль).

Метавулканиты тимской свиты Курского блока, по-видимому, являются эквивалентами базальтов и андезитобазальтов Онгелук группы Постмасбург и Хекпоорт (~2220 млн лет) группы Претория в кратоне Каапвааль, а также базальтов Чела Спрингс (2208 ± 15 млн лет) группы Лоуэр Уайлу в блоке Пилбара (рис. 8). Метавулканиты Курского блока, как и базальты Ваалбары, изливались на начальной стадии образования рифтов (Lenhardt et al., 2012). Таким образом, нижняя терригенная толща тимской свиты соответствует группе Тури Крик, а верхняя вулканогенная толща – группе Лоуэр Уайлу в кратоне Пилбара и группам Постмасбург и Претория в кратоне Каапвааль. Излияние базальтов было связано с синхронным развитием континентальных рифтов на континенте Ваалбара и кратоне Сарматия.

После формирования мощных терригенновулканогенных толщ в рифтогенных обстановках позже 2.2 млрд лет в пределах Сарматии фиксируется длительный перерыв в осадконакоплении, во время которого происходило образование кор выветривания.

Резкий всплеск эндогенной активности отмечался в кратоне Каапвааль и Восточной Сарматии в интервале 2070-2040 млн лет. В кратоне Каапвааль он выражался в образовании огромного Бушвельдского комплекса с возрастом 2054 ± \pm 1.3 млн лет (Scoates, Friedman, 2008) вместе с бимодальной базальт-риолитовой формацией Руйберг (2057 \pm 4 млн лет; Lenhardt, Eriksson, 2012) мощностью 4-6 км, гранофирами Рэшуп (2060-2050 млн лет) и гранитами Лебова (2054 ± ± 2 млн лет; Lenhardt, Eriksson, 2012). По данным изотопии неодима и кислорода, гранитоиды Бушвельда образовались при плавлении архейских кварц-полевошпатовых коровых пород (Hill et al., 1996). Все граниты характеризуются отрицательными значениями ε_{Nd} (от -6.4 до -3.0, среднее -5.2; Fourie, Harris, 2011), кислые вулканиты формации Руйберг имеют значение $\varepsilon_{Nd} = -5.9$ и -4.1. Также отрицательные значения є_{Nd} получены для нижнего, критического и главного горизонтов расслоенного Бушвельдского плутона: от -7.3 до -5.4 (Maier et al., 2000), в том числе значение -6.8 для норитов и пироксенитов главной зоны около Плэтрифа (Pronost et al., 2008). Бушвельдский расслоенный комплекс слагает самую крупную расслоенную интрузию в мире: ее площадь 65000 км² и мощность 7-9 км. Гранофиры Рэшуп и вулканиты формации Руйберг выплавлялись из того же источника, что и Бушвельдский плутон (Schweitzer et al., 1997). Плавление этого источника было связано с мантийным плюмом, вызвавшим кратковременный, но очень объемный вулканизм, сразу после которого последовало внедрение гранитных интрузий формации Лебова.

В пределах Восточной Сарматии также отмечался всплеск магматической активности в это время. Габбро-норитовые массивы золотухинского комплекса имеют возраст 2069-2066 млн лет (Альбеков и др., 2012) и характеризуются отрицательными значениями $\varepsilon_{Nd}(2066) = -5.0...-7.0.$ Многочисленные диорит-гранодиоритовые массивы стойло-николаевского комплекса с возрастом 2060-2040 млн лет также имеют низкорадиогенный состав: $\varepsilon_{Nd}(2050) = -6.0...-9.3$ (Савко и др., 2014б). Близким возрастом и изотопным составом неодима характеризуются сиениты шебекинскокомплекса в Белгородской синформе го (2046 млн лет, $\varepsilon_{Nd}(T) = -6.1$) и вулканиты бимодальной серии в Михайловской синформе (2047 млн лет; $\varepsilon_{Nd}(2050) = -6.5$ и -5.3 для риолитов и базальтов соответственно).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Приведенные выше геолого-структурные, геохронологические и изотопно-геохимические данные позволяют сопоставить историю развития

том 25 № 2 2017

САВКО и др.

Рис. 8. Схема корреляции неоархейских и раннепалеопротерозойских образований в бассейнах Ваалбары (по Beukes, Gutzmer, 2008) и Сарматии.

1 – базальты; 2 – конгломераты; 3 – сланцы; 4 – карбонатные породы; 5 – песчаники; 6 – железисто-кремнистые формации; 7 – углеродистые сланцы; 8 – риолиты; 9 – гляциальные отложения; 10 – железистые микриты.

Рис. 8. (Окончание.)

кратонов Каапвааль, Пилбара и Восточная Сарматия на протяжении неоархея и палеопротерозоя.

2.80-2.60 млрд лет. В этом временном интервале все три кратона являлись фрагментами континентальной коры, консолидированной около 2.8 млрд лет назад и претерпевшей континентальный рифтогенез в интервале 2.8-2.7 млрд лет. Кратоны Пилбара и Каапвааль представляли собой стабильную континентальную литосферу и уже были частями континента Ваалбара (Barley et al., 2005; de Kock et al., 2009, 2012; Nelson et al., 1999). В блоке Пилбара в интервале 2.77-2.73 млрд лет в континентальных рифтовых структурах вместе с терригенными осадками накапливались вулканические породы бимодальной серии, на которых залегали мощные толщи толеитовых и умеренно- щелочных базальтов, реже коматиитовых базальтов группы Фортескью с возрастом 2730-2715 млн лет (Blake et al., 2004). Такими же толщами континентальных коматиитовых базальтов, которые перекрываются толеитовыми базальтами и осадочными породами группы Вентерсдорп с возрастом 2.72-2.64 млрд лет, представлен разрез неоархея в кратоне Каапвааль (Crow, Condie, 1988; de Kock et al., 2009, 2012; Nelson et al., 1999). Таким образом, общая история вулканизма в период 2.78-2.60 млрд лет в кратонах Пилбара и Каапвааль предполагает, что его причиной был мантийный плюмовый магматизм (Barley et al., 2005). Формирование стабильной континентальной коры к рубежу 2.8 млрд лет и коматиит-базальтовый вулканизм в интервале от 2.8 до 2.6 млрд лет имели место и в пределах Сарматии.

2.60-2.45 млрд лет. В это время для всех трех кратонов была сходная тектоническая обстановка и происходило накопление ЖКФ. Именно ЖКФ крупнейших железорудных бассейнов Трансвааль и Хамерсли, сформировавшиеся в едином океаническом бассейне около 2.50-2.45 млрд лет назад, лежат в основе успешных палеотектонических реконструкций суперконтинента Baaлбapa (Beukes, Gutzmer, 2008; Cheney, 1996). Палеопротерозойские ЖКФ Сарматии также сформировались в самом начале палеопротерозоя до Великого окислительного события и представляют собой морские хемогенные породы без примесей детритового материала и существенного гидротермального привноса компонентов. Их накопление ограничено интервалом 2.50-2.43 млрд лет (Савко и др., 2015в). Удивительное сходство строения ЖКФ в железорудных бассейнах Сарматии. Трансвааль и Хамерсли проявляется даже в мелких деталях. Все они залегают на карбонатных отложениях (карбонатных платформах) и имеют четырехчленное строение, где две толщи железистых кварцитов разделены двумя горизонтами сланцев близкого состава (рис. 8), если "снять" метаморфические изменения в мегаблоке Сарматия. Палеопротерозойские ЖКФ Трансвааль, Хамерсли и Сарматии отличаются широким развитием рибекитовых и эгириновых (асбестовых) разновидностей железистых кварцитов (Савко, Поскрякова, 2003а, 20036; Савко, 2006; Miyano, Beukes, 1997; Miyano, Klein, 1983).

2.45–2.20 млрд лет. В этом интервале времени для кратонов Пилбара, Каапвааль и Сарматия имела место близкая тектоническая обстановка: на всех трех кратонах отмечается региональное структурное и стратиграфическое несогласие и длительный перерыв в осадконакоплении, который нарушается в кратоне Каапвааль гляциальными отложениями в интервале 2430–2316 млн лет (Eriksson, Condie, 2014). В конце рассматриваемого временного интервала произошла активизация процессов континентального рифтогенеза. В рифтогенных впадинах происходило преимущественно терригенное осадконакопление, завершившееся мощным базитовым вулканизмом и накоплением толщ базальтов около 2.2 млрд лет.

2.20–2.00 млрд лет. В это время кратоны Пилбара и Каапвааль уже имели разную геологическую историю.

Южная часть кратона Пилбара подверглась складчатости и метаморфизму в интервале 2215-2145 млн лет (офтальмианская орогения), связанным с субдукцией под кратон Пилбара в условиях активной континентальной окраины (Eriksson, Condie, 2014), сочленением его с провинцией Гаскойн (Martin, Morris, 2010) и коллизионным коллапсом. Осадконакопление возобновилось отложением доломитов Уилли Уолли 2031 ± 6 млн лет назад (Müller et al., 2005). После их накопления отмечается еще одно орогенное событие ~2000-1960 млн лет назад (гленбургский орогенез), вызванное столкновением кратонов Пилбара и Йилгарн (Eriksson, Condie, 2014), в результате чего в интервале 1.95-1.80 млрд лет сформировался Западно-Австралийский кратон (Johnson et al., 2011; Smirnov et al., 2013).

Яркой страницей в истории кратона Каапвааль позже 2.2 млрд лет является вспышка эндогенной активности планетарного масштаба около 2.06 млрд лет назад, когда произошло внедрение в кору огромного объема магм (Бушвельдский комплекс). Кратоны Зимбабве и Каапвааль объединились вдоль метаморфического пояса Лимпопо только 1.8 млрд лет назад (Smirnov et al., 2013).

В истории кратона Сарматия позже 2.2 млрд лет был продолжительный перерыв в осадконакоплении. На его восточном фланге (в современных координатах) на активной окраине в Волго-Донском океане (Лосевский и Воронцовский террейны) формировалась островодужная система в интервале 2.20–2.14 млрд лет (Терентьев и др., 2014) и возник Волго-Донской (или Восточно-Сарматский) ороген (Щипанский и др., 2007). Таким образом, офтальмианская орогения в блоке Пилбара и формирование Волго-Донского орогена на восточной границе Сарматии были близки по времени. В кратоне Каапвааль такого события зафиксировано не было.

Кратоны Каапвааль и Сарматия характеризуются синхронной вспышкой эндогенной активности около 2.06 млрд лет назад — мощным магматизмом с близкими изотопно-геохимическими характеристиками коровых источников, начавшимся сразу после метаморфического события в Сарматии (Савко и др., 2015а) и эпизода деформаций в Каапвааль (Eriksson, Condie, 2014). Возможно, после распада Ваалбары на рубеже 2.06 млрд лет кратоны Каапвааль и Сарматия находились недалеко друг от друга и мантийный плюм, вызвавший объемный магматизм комплекса Бушвельд, "задел" и Восточную Сарматию.

Из вышесказанного следует, что распад Ваалбары начался позже 2.2 млрд лет назад. Интересно, что кратоны Зимбабве и Йилгарн, к которым в итоге присоединились части Ваалбары (Каапвааль и Пилбара), также составляли суперкратон Зимгарн, распавшийся 2.2 млрд лет назад (Smirnov et al., 2013). Таким образом, представляется, что распад Ваалбары был сложным многоактным процессом: в интервале 2.2–2.0 млрд лет составлявшие его части то расходились, то снова сближались, пока кратоны Каапваль и Зимбабве, Пилбара и Йилгарн, Сарматия и Волго-Уралия, соответственно, окончательно не объединились.

выводы

Корреляция геологических разрезов и событий в интервале 2.6—2.0 млрд лет в кратонах Восточная Сарматия, Пилбара и Каапвааль дает основание полагать, что кратон Сарматия являлся частью суперконтинента Ваалбара. Об этом свидетельствуют следующие общие геологические события в истории Ваалбары и Сарматии:

 Консолидация архейского фундамента на рубеже около 2.8 млрд лет и последующий континентальный рифтогенез в интервале 2.8–2.6 млрд лет, сопровождаемый излиянием мощных толщ основных эффузивов.

2. Накопление мощных толщ хемогенных осадков ЖКФ в обширном мелководном морском бассейне в интервале 2.6–2.45 млрд лет на карбонатной платформе в условиях пассивной континентальной окраины без активного магматизма.

3. Регрессия морского бассейна, высокое стояние континента и длительный перерыв 2.45— 2.20 млрд лет в осадконакоплении, за исключением оледенения и гляциальных осадков в кратоне Каапвааль.

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

4. Континентальный рифтогенез на рубеже 2.2 млрд лет с накоплением терригенных осадков во впадинах и последующим базитовым вулканизмом.

Распад суперконтинента Ваалбара произошел в интервале 2.2–2.0 млрд лет.

Благодарности. Авторы благодарны Г.В. Артеменко за консультации по геологии Украинского щита.

Настоящая работа поддержана госзаданием РФ (проект № 5.1997.2017 ПЧ), РНФ (проект № 17-17-01032), программой базовых исследований ИГЕМ РАН и отчасти проектом РФФИ № 14-05-00933.

СПИСОК ЛИТЕРАТУРЫ

Альбеков А.Ю., Рыборак М.В., Бойко П.С. Реперное U-Рь изотопное датирование палеопротерозойских габброидных формаций Курского блока Сарматии (Воронежский кристаллический массив) // Вестник Воронежского ун-та. Сер. геол. 2012. № 2. С. 84–94.

Артеменко Г.В., Швайка И.А., Татаринова Е.А. Палеоархейский возраст ультраметаморфических плагиогранитоидов Курско-Бесединского блока (Воронежский кристаллический массив) // Геол. журн. 2006. № 1. С. 84–87.

Артеменко Г.В., Самборская И.А., Мартынюк А.В. Геохимическая характеристика и геодинамические условия формирования метабазитов и метакоматиитов Кривбасса (Среднеприднепровский мегаблок УШ) // Минералогічний журнал. 2015. Т. 37. № 2. С. 76–89.

Бибикова Е.В., Богданова С.В., Постников А.В. и др. Зона сочленения Сарматии и Волго-Уралии: изотопногеохронологическая характеристика супракрустальных пород и гранитоидов // Стратиграфия. Геол. корреляция. 2009. Т. 17. № 6. С. 3–16.

Бибикова Е.В., Клаэссон С., Федотова А.А. и др. Изотопно-геохронологическое (U-Th-Pb, Lu-Hf) изучение цирконов архейских магматических и метаосадочных пород Подольского домена Украинского щита // Геохимия. 2013. № 2. С. 99–121.

Бибикова Е.В., Федотова А.А., Клаэссен С., Степанюк Л.М. Ранняя кора Подольского домена Украинского щита: изотопный возраст терригенных цирконов из кварцитов бугской серии // Стратиграфия. Геол. корреляция. 2015. Т. 23. № 6. С. 3–15.

Бойко П.С., Альбеков А.Ю., Рыборак М.В. Петрологогеохимические особенности габброидов золотухинского комплекса Курского блока ВКМ как индикаторы геодинамической обстановки его формирования // Вестник Воронежского ун-та. Сер. геол. 2014. № 1. С. 47–53.

Крестин Е.М., Юдина В.В. Ультраосновные вулканиты верхнеархейских и нижнепротерозойских поясов КМА // Бюлл. МОИП. 1988. Т. 63. Вып. 3. С. 89–102.

Лобач-Жученко С.Б., Бибикова Е.В., Балаганский В.В. и др. Палеоархейские тоналиты в палеопротерозойской Орехово-Павлоградской коллизионной зоне Украинского щита // Докл. АН. 2010. Т. 433. № 2. С. 212–218.

том 25 № 2 2017

Плаксенко Н.А. Главнейшие закономерности железорудного осадконакопления в докембрии. Воронеж: Изд-во Воронежского ун-та, 1966.

24

Савко К.А. Реакционные структуры и эволюция метаморфизма шпинелевых гранулитов Воронежского кристаллического массива // Петрология. 2000. № 2. С. 165–181.

Савко К.А. Фазовые равновесия в породах палеопротерозойской железистой формации Лебединского месторождения Курской магнитной аномалии и петрогенезис щелочно-амфиболовых железистых кварцитов // Петрология. 2006. Т. 14. № 6. С. 621–642.

Савко К.А., Кальмуцкая Н.Ю. Петрология недосыщенных калием метапелитов Воронежского кристаллического массива с рассмотрением парагенезиса оливин– жедрит–ортопироксен–гранат–магнетит // Петрология. 2002. Т. 10. № 3. С. 283–311.

Савко К.А., Полякова Т.Н. Зональный метаморфизм и петрология метапелитов Тим-Ястребовской структуры, Воронежский кристаллический массив // Петрология. 2001. Т. 9. № 6. С. 593–611.

Савко К.А., Поскрякова М.В. Рибекит-эгирин-селадонитовые железистые кварциты Михайловского железорудного месторождения Курской магнитной аномалии: фазовые равновесия и условия метаморфизма // Петрология. 2003а. Т. 11. № 5. С. 471–490.

Савко К.А., Поскрякова М.В. Минералогия, фазовые равновесия и условия метаморфизма пород Новоялтинского железорудного месторождения КМА // Вестник Воронежского ун-та. Сер. геол. 20036. № 2. С. 113–130.

Савко К.А., Поскрякова М.В., Лебедев И.П. Фазовые равновесия и физико-химические условия метаморфизма пород железисто-кремнистой формации Панковского месторождения Курской магнитной аномалии // Вестник Воронежского ун-та. Сер. геол. 2003. № 1. С. 58–73.

Савко К.А., Котов А.Б., Сальникова Е.Б. и др. Возраст метаморфизма гранулитовых комплексов Воронежского кристаллического массива: результаты U-Pb геохронологических исследований монацита // Докл. АН. 2010. Т. 435. № 5. С. 647–652.

Савко К.А., Самсонов А.В., Базиков Н.С. Метатерригенные породы воронцовской серии Воронежского кристаллического массива: геохимия, особенности формирования и источники сноса // Вестник Воронежского ун-та. Сер. геол. 2011. № 1. С. 70–94.

Савко К.А., Самсонов А.В., Ларионов А.Н. и др. Палеопротерозойские граниты А- и S-типов востока Воронежского кристаллического массива: геохронология, петрогенезис и тектоническая обстановка формирования // Петрология. 2014а. Т. 22. № 3. С. 235–264.

Савко К.А., Самсонов А.В., Базиков Н.С., Козлова Е.Н. Палеопротерозойские гранитоиды Тим-Ястребовской структуры Воронежского кристаллического массива: геохимия, геохронология и источники расплавов // Вестник Воронежского ун-та. Сер. геол. 2014б. № 2. С. 56–78.

Савко К.А., Самсонов А.В., Сальникова Е.Б. и др. HT/LP метаморфическая зональность восточной части Воронежского кристаллического массива: возраст, условия и геодинамическая обстановка формирования // Петрология. 2015а. Т. 23. № 6. С. 559–575. Савко К.А., Холина Н.В., Холин В.М., Ларионов А.М. Возраст неоархейских ультракалиевых риолитов – важный геохронологический репер эволюции раннедокембрийской коры Воронежского кристаллического массива // Материалы VI Росс. конф. по изотопной геохронологии. СПб.: Sprinter, 20156. С. 247–249.

Савко К.А., Базиков Н.С., Артеменко Г.В. Геохимическая эволюция железисто-кремнистых формаций Воронежского кристаллического массива в раннем докембрии: источники вещества и геохронологические ограничения // Стратиграфия. Геол. корреляция. 2015в. Т. 23. № 5. С. 3–21.

Савко К.А., Цыбуляев С.В., Кориш Е.Х. Метабазиты Тим-Ястребовской и Авильской рифтогенных структур на восточной окраине Сарматии: геохимия, источники расплавов и геологические корреляции // Вестник Воронежского ун-та. Сер. геол. 2016. № 2. С. 51–65.

Степанова А.В., Сальникова Е.Б., Самсонов А.В. и др. Дайки долеритов 2405 млн лет – фрагмент палеопротерозойской крупной магматической провинции на Карельском кратоне // Докл. АН. 2016. В печати.

Стратиграфические разрезы докембрия Украинского щита. Киев: Наукова Думка, 1985.

Терентьев Р.А. Раннепротерозойские толщи и магматические комплексы лосевской шовной зоны Воронежского кристаллического массива: геологическая позиция, вещественный состав, геохимия, палеогеодинамика // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 2. С. 123–146.

Терентьев Р.А., Савко К.А., Самсонов А.В., Ларионов А.Н. Геохронология и геохимия кислых метавулканитов лосевской серии Воронежского кристаллического массива // Докл. АН. 2014. Т. 454. № 5. С. 575–578.

Холин В.М. Геология, геодинамика и металлогеническая оценка раннепротерозойских структур КМА. Автореф. дисс. ... канд. геол.-мин. наук. Воронеж, 2001.

Холин В.М., Лебедев И.П., Стрик Ю.Н. О геодинамике формирования и развития Тим-Ястребовской структуры КМА // Вестник Воронежского ун-та. Сер. геол. 1998. № 5. С. 51–59.

Щипанский А.А., Самсонов А.В., Петрова А.Ю., Ларионова Ю.О. Геодинамика восточной окраины Сарматии в палеопротерозое // Геотектоника. 2007. № 1. С. 43–70.

Aspler L.B., Chiarenzelli J.R. Protracted breakup of Kenorland, a Neoarchean supercontinent? Geochronologic, tectonostratigraphic and sedimentologic evidence from the Paleoproterozoic // Sediment. Geol. 1998. V. 120. P. 75–104.

Barley M.E., Bekker A., Krapez B. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen // Earth Planet. Sci. Lett. 2005. V. 238. P. 156–171.

Beukes N.J., Gutzmer J. Origin and paleoenvironmental significance of major iron formations at the Archean–Paleoproterozoic boundary // Soc. Econ. Geol. Rev. 2008. V. 15. P. 5–47.

Beukes N.J., Klein C., Kaufman A.J., Hayes J.M. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an Early Proterozoic Transition from limestone to iron-formation deposition, Transvaal supergroup, South Africa // Econ. Geol. 1990. V. 85. № 4. P. 663–690. *Bibikova E.V., Williams I.S.* Ion microprobe U-Th-Pb isotopic studies of zircons from three Early Precambrian areas in the USSR // Precambrian Res. 1990. V. 48. P. 203–221.

Blake T.S., Buick R., Brown S.J.A., Barley M.E. Geochronology of a late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates // Precambrian Res. 2004. V. 133. P. 143–173

Bleeker W. The late Archean record: a puzzle in ca. 35 pieces // Lithos. 2003. V. 71. P. 99–134.

Bogdanova S., Gorbatschev R., Grad M. et al. EURO-BRIDGE: new insight into the geodynamic evolution of the East European Craton // European Lithosphere Dynamics. Eds. Gee D.G., Stephenson R.A. Geol. Soc. London. Mem. 2006. \mathbb{N} 32. P. 599–628.

Bogdanova S.V., Bingen B., Gorbatschev R. et al. The East European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Res. 2008. V. 160. P. 23–45.

Cheney E.S. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia // Precambrian Res. 1996. V. 79. \mathbb{N} 1–2. P. 3–24.

Claesson S., Bogdanova S.V., Bibikova E.V., Gorbatschev R. Isotopic evidence of Paleoproterozoic accretion in the basement of the East European Craton // Tectonophysics. 2001. V. 339. \mathbb{N} 1–2. P. 1–18.

Claesson S., Bibikova E.V., Bogdanova S.V., Skobelev V. Archaean terranes, Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East European Craton // European Lithosphere Dynamics. Eds. Gee D.G., Stephenson R.A. Geol. Soc. London. Mem. 2006. № 32. P. 645–654.

Condie K.C., Rosen O.M. Laurentia–Siberia connection revisited // Geology. 1994. V. 22. P. 168–170.

Crow C., Condie K.C. Geochemistry and origin of late Archean volcanics from the Ventersdorp Supergroup, South Africa // Precambrian Res. 1988. V. 42. P. 19–37.

de Kock M.O., Evans D.A.D., Beukes N.J. Validating the existence of Vaalbara in the Neoarchean // Precambrian Res. 2009. V. 174. P. 145–154.

de Kock M.O., Beukes N.J., Armstrong R.A. New SHRIMP U-Pb zircon ages from the Hartswater Group, South Africa: implications for correlations of the Neoarchean Ventersdorp Supergroup on the Kaapvaal craton and with the Fortescue Group on the Pilbara craton // Precambrian Res. 2012. V. 204–205. P. 66–74.

Eriksson P.G., Condie K.C. Cratonic sedimentation regimes in the ca. 2450–2000 Ma period: relationship to a possible widespread magmatic slowdown on Earth? // Gondwana Res. 2014. V. 25. P. 30–47.

Fonarev V.I., Pilugin S.M., Savko K.A., Novikova M.A. Exsolution textures of orthopyroxene and clinopyroxene in high-grade BIF of the Voronezh Crystalline Massif: evidence of ultrahigh-temperature metamorphism // J. Metam. Geol. 2006. V. 24. P. 135–151.

Fourie D.S., Harris C. O-isotope study of the Bushveld Complex granites and granophyres: constraints on source composition, and assimilation // J. Petrol. 2011. V. 52. \mathbb{N}_{2} 11. P. 2221–2242.

Gorbatschev R., Bogdanova S. Frontiers in the Baltic Shield // Precambrian Res. 1993. V. 64. P. 3–21.

Hill M., Barker F, Hunter D.R., Knight R. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex // Int. Geol. Rev. 1996. V. 38. P. 195–227.

Hölttä P., Balagansky V., Garde A.A. et al. Archean of Greenland and Fennoscandia // Episodes. 2008. V. 31. \mathbb{N} 1. P. 13–19.

Jahn B., Simonson B.M. Carbonate Pb-Pb ages of the Wittenoom Formation and Carawine Dolomite, Hamersley Basin, Western Australia (with implications for their correlation with the Transvaal Dolomite of South Africa) // Precambrian Res. 1995. V. 72. № 3–4. P. 247–261.

Johnson S.P., Sheppard S., Rasmussen B. et al. Two collisions, two sutures: punctuated pre-1950 Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh orogenies // Precambrian Res. 2011. V. 189. P. 239–262.

Klein C., Beukes N.J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation in the early Proterozoic Transvaal Supergroup, South Africa // Econ. Geol. 1989. V. 84. P.1733–1774.

Lenhardt N., Eriksson P.G. Volcanism of the Palaeoproterozoic Bushveld Large Igneous Province: the Rooiberg Group, Kaapvaal Craton, South Africa // Precambrian Res. 2012. V. 214–215. P. 82–94.

Lenhardt N., Eriksson P.G., Catuneanu O., Bumby A.J. Nature of and controls on volcanism in the ca. 2.32–2.06 Ga Pretoria Group, Transvaal Supergroup, Kaapvaal Craton, South Africa // Precambrian Res. 2012. V. 214–215. P. 106–123.

Lobach-Zhuchenko S.B., Balagansky V.V., Baltybaev Sh.K. et al. The Orekhov–Pavlograd zone, Ukrainian Shield: milestones of its evolutionary history and constraints for tectonic models // Precambrian Res. 2014. V. 252. P. 71–87.

Maier W.D., Arndt N.T., Curl E.A. Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks // Contrib. Mineral. Petrol. 2000. V. 140. P. 316–327.

Martin D.McB., Morris P.A. Tectonic setting and regional implications of ca 2.2 Ga mafic magmatism in the southern Hamersley Province, Western Australia // Austral. J. Earth Sci. 2010. V. 57. P. 911–931.

Miyano T., Beukes N.J. Mineralogy and petrology of the contact metamorphosed amphibole asbestos-bearing Penge Iron Formation, Eastern Transvaal, South Africa // J. Petrol. 1997. V. 38. № 5. P. 651–676.

Miyano T., Klein C. Conditions of riebeckite formation in the iron formation of the Dales Gorge Member, Hamersley group, Western Australia // Am. Miner. 1983. V. 68. P. 517–529.

Miyano T., Klein C. Phase equilibria in the system K_2O -FeO-MgO-Al₂O₃-SiO₂-CO₂-H₂O and the stability limit of stilpnomelane in metamorphosed Precambrian iron formations // Contrib. Mineral. Petrol. 1989. V. 102. P. 478-491.

Müller S.G., Krapez B., Barley M.E., Fletcher I.R. Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions // Geology. 2005. V. 33. P. 577–580.

Nelson D.R., Trendall A.F., Altermann W. Chronological correlations between the Pilbara and Kaapvaal cratons // Precambrian Res. 1999. V. 97. P. 165–189.

том 25 № 2 2017

Polyakova T.N., Savko K.A., Skryabin V.Yu. Evolutions of Early Proterozoic metamorphism within Tim-Yastrebovskaya Paleorift, Voronezh Crystalline Massif, East-European Platform: metapelite systematic, phase equilibrium and P-T conditions // Metamorphism and Crustal Evolution. Ed. *Thomas H.* New Delhi: Atlantic Publishers and Distributors, 2005. P. 26–72.

Pronost J., Harris C., Pin C. Relationship between foot wall composition, crustal contamination, and fluid rock interaction in the Platreef, Bushveld Complex, South Africa // Miner. Deposita. 2008. V. 43. P. 825–848.

Puchtel I.S., Arndt N.T., Hofmann A.W. et al. Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield // Contrib. Mineral. Petrol. 1998. V. 130. P. 134–153.

Samsonov A.V., Zhuravlev D.Z., Bibikova E.V. Geochronology and petrogenesis of an Archaean acid volcano-plutonic suite of the Verchovtsevo greenstone belt, Ukrainian Shield // Int. Geol. Rev. 1993. V. 35. P. 1166–1181.

Samsonov A.V., Chernyshev I.V., Nutman A.P., Compston W. Evolution of the Archaean Aulian Gneiss Complex, Ukraine: SHRIMP U-Pb zircon evidence // Precambrian Res. 1996. V. 78. P. 65–78.

Shchipansky A.A., Bogdanova S.V. The Sarmatian crustal segment: Precambrian correlation between the Voronezh Massif and the Ukrainian Shield across the Dniepr-Donets Aulacogen // Tectonophysics. 1996. V. 268. P. 109–125.

Schweitzer J.K., Hatton C.J., De Waal S.A. Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa // J. African Earth Sci. 1997. V. 24. P. 95–104.

Scoates J.S., Friedman R.M. Precise age of the platiniferous Merensky reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique // Econ. Geol. 2008. V. 103. P. 465–471.

Smirnov A.V., Evans D.A.D., Ernst R.E. et al. Trading partners: tectonic ancestry of southern Africa and Western Australia, in Archean supercratons Vaalbara and Zimgarn // Precambrian Res. 2013. V. 224. P. 11–22.

Stepanova A.V., Samsonov A.V., Salnikova E.B. et al. Paleoproterozoic continental MORB-type tholeiites in the Karelian craton: petrology, geochronology and tectonic setting // J. Petrol. 2014. V. 55. № 9. P. 1719–1751.

Stepanova A.V., Salnikova E.B., Samsonov A.V. et al. The 2.31 Ga mafic dykes in the Karelian craton, eastern Fennoscandian shield: U-Pb age, source characteristics and implication to the breakup processes // Precambrian Res. 2015. V. 259. P. 43–57.

Sumner D.Y., Beukes N.J. Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa // S. Afr. J. Geol. 2006. V. 09. P. 11–22.

Terentiev R.A., Savko K.A., Santosh M. Paleoproterozoic crustal evolution in the East Sarmatian Orogen: petrology, geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of andesites from the Voronezh massif, Western Russia // Lithos. 2016. V. 246–247. P. 61–80.

Trendall A.F., Compston W., Nelson D.R. et al. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia // Austral. J. Earth Sci. 2004. V. 51. P. 621–644.

Vuollo J., Huhma H. Paleoproterozoic mafic dikes in NE Finland // Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. Eds. Lehtinen M., Nurmi P.A., Rämö O.T. Amsterdam: Elsevier, 2005. P. 195–236.

Wingate M.T.D. A palaeomagnetic test of the Kaapvaal– Pilbara (Vaalbara) connection at 2.78 Ga // S. Afr. J. Geol. 1998. V. 101. \mathbb{N} 4. P. 257–274.

Wingate M.T.D. Ion microprobe baddeleyite and zircon ages for Late Archaean mafic dykes of the Pilbara craton, Western Australia // Austral. J. Earth Sci. 1999. V. 46. № 4. P. 493–500.

Рецензенты А.А. Щипанский, М.А. Семихатов